Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 15 de 15
Filtrar
1.
Brain ; 146(11): 4690-4701, 2023 11 02.
Artigo em Inglês | MEDLINE | ID: mdl-37450572

RESUMO

Intracerebral haemorrhage is an unmet medical need affecting more than 3 million people worldwide every year and leading to the formation of an intracerebral haematoma. Updated guidelines (2022) for the management of intracerebral haemorrhage patients recognize that minimally invasive approaches for the evacuation of supratentorial intracerebral haemorrhage have demonstrated reductions in mortality compared with medical management alone. However, improvement of functional outcome with a procedure involving thrombolytic therapy was neutral in the last large phase 3 clinical trial and requires a more effective and safer thrombolytic agent than those currently available. Here, we demonstrate that O2L-001 allows for the extended release of W253R/R275S recombinant tissue-type plasminogen activator (rtPA). A new rtPA variant, called optimized tPA (OptPA), offers improved efficacy for haematoma evacuation as well as improved safety. OptPA was produced in a Chinese hamster ovary cell line before purification, nanoprecipitation using the NANOp2Lysis® technological platform followed by suspension in a solution of 17% poloxamer 407 to obtain O2L-001. Plasmin generation assays were performed to demonstrate O2L-001 safety. Ex vivo haematoma models using human blood were used to demonstrate O2L-001 thrombolysis properties and efficacy. For the best translational significance, a clinical sized haematoma was used to ensure catheter placement and to allow administration of the thrombolytic agent into the core of the haematoma via a minimally invasive procedure. The capacity of OptPA to convert plasminogen into plasmin is strongly decreased compared to rtPA, thereby reducing potential bleeding events. However, a clot lysis assay showed that OptPA had the same fibrinolytic activity as rtPA. We demonstrated that long-term exposure to a thrombolytic agent was essential to achieve high thrombolysis efficacy. Indeed, 24 h continuous exposure to 0.1 µg/ml rtPA had similar efficacy than repeated short exposure to 30 µg/ml rtPA. This finding led to the development of O2L-001, allowing the extended release of OptPA in the first 6 h following injection. An ex vivo model using human blood was used to demonstrate O2L-001 efficacy. Interestingly, unlike rtPA, O2L-001 was able to induce the complete lysis of the 5 ml haematoma. In clinical sized haematomas (obtained from 30 ml of human blood), a single injection of O2L-001 at 1 mg/ml into the core of the haematoma led to a 44% increase in thrombolysis compared to rtPA. Taken together, these results demonstrate that O2L-001 provides new hope for haematoma evacuation and the treatment of patients with intracerebral haemorrhage.


Assuntos
Fibrinolisina , Fibrinolíticos , Animais , Cricetinae , Humanos , Fibrinolíticos/uso terapêutico , Fibrinolisina/uso terapêutico , Células CHO , Cricetulus , Ativador de Plasminogênio Tecidual/uso terapêutico , Hemorragia Cerebral/tratamento farmacológico , Terapia Trombolítica , Hematoma/tratamento farmacológico
2.
Biochim Biophys Acta ; 1862(3): 395-402, 2016 03.
Artigo em Inglês | MEDLINE | ID: mdl-26493446

RESUMO

The plasminogen activation (PA) system consists in a group of proteases and protease inhibitors regulating the activation of the zymogen plasminogen into its proteolytically active form, plasmin. Here, we give an update of the current knowledge about the role of the PA system on different aspects of neuroinflammation. These include modification in blood-brain barrier integrity, leukocyte diapedesis, removal of fibrin deposits in nervous tissues, microglial activation and neutrophil functions. Furthermore, we focus on the molecular mechanisms (some of them independent of plasmin generation and even of proteolysis) and target receptors responsible for these effects. The description of these mechanisms of action may help designing new therapeutic strategies targeting the expression, activity and molecular mediators of the PA system in neurological disorders involving neuroinflammatory processes. This article is part of a Special Issue entitled: Neuro Inflammation edited by Helga E. de Vries and Markus Schwaninger.


Assuntos
Barreira Hematoencefálica/imunologia , Doenças do Sistema Nervoso Central/imunologia , Inflamação/imunologia , Microglia/imunologia , Plasminogênio/imunologia , Animais , Barreira Hematoencefálica/patologia , Doenças do Sistema Nervoso Central/patologia , Fibrina/imunologia , Fibrinolisina/imunologia , Humanos , Inflamação/patologia , Leucócitos/imunologia , Leucócitos/patologia , Microglia/patologia , Ativador de Plasminogênio Tecidual/imunologia
3.
Mol Vis ; 22: 1332-1341, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-27881907

RESUMO

PURPOSE: Intravitreal recombinant tissue plasminogen activator (rtPA) is used off-label for the surgical management of submacular hemorrhage, a severe complication of neovascular age-related macular degeneration. rtPA is approved for coronary and cerebral thrombolysis. However, in ischemic stroke rtPA is known to increase excitotoxic neural cell death by interacting with the N-methyl-D-aspartate (NMDA) receptor. We therefore investigated the retinal toxicity of rtPA in healthy rats and in a model of NMDA-induced retinal excitotoxicity. METHODS: First, rtPA at three different doses (2.16 µg/5 µl, 0.54 µg/5 µl, and 0.27 µg/5 µl) or vehicle (NaCl 0.9%) was injected intravitreally in healthy rat eyes. Electroretinograms (ERGs) were performed at 24 h or 7 days. Annexin V-fluorescein isothiocyanate (FITC)-labeled apoptotic retinal ganglion cells (RGCs) were counted on flatmounted retinas at 24 h or 7 days. Next, NMDA + vehicle or NMDA + rtPA (0.27 µg/5 µl) was injected intravitreally to generate excitotoxic conditions. Apoptotic annexin V-FITC-labeled RGCs and surviving Brn3a-labeled RGCs were quantified on flatmounted retinas and radial sections, 18 h after treatment. RESULTS: In healthy rat eyes, the number of apoptotic RGCs was statistically significantly increased 24 h after the administration of rtPA at the highest dose (2.16 µg/5 µl; p = 0.0250) but not at the lower doses of 0.54 and 0.27 µg/5 µl (p = 0.36 and p = 0.20), compared to vehicle. At day 7, there was no difference in the apoptotic RGC count between the rtPA- and vehicle-injected eyes (p = 0.70, p = 0.52, p = 0.11). ERG amplitudes and implicit times were not modified at 24 h or 7 days after injection of any tested rtPA doses, compared to the baseline. Intravitreal administration of NMDA induced RGC death, but under these excitotoxic conditions, coadministration of rtPA did not increase the number of dead RGCs (p = 0.70). Similarly, the number of surviving RGCs on the flatmounted retinas and retinal sections did not differ between the eyes injected with NMDA + vehicle and NMDA + rtPA (p = 0.59 and p = 0.67). CONCLUSIONS: At low clinical equivalent doses corresponding to 25 µg/0.1 ml in humans, intravitreal rtPA is not toxic for healthy rat retinas and does not enhance NMDA-induced excitotoxicity. Vitreal equivalent doses ≥200 µg/0.1 ml should be avoided in patients, due to potential RGC toxicity.


Assuntos
Neurotoxinas/toxicidade , Proteínas Recombinantes/efeitos adversos , Proteínas Recombinantes/farmacologia , Ativador de Plasminogênio Tecidual/efeitos adversos , Ativador de Plasminogênio Tecidual/farmacologia , Animais , Apoptose/efeitos dos fármacos , Eletrorretinografia , Injeções Intravítreas , Masculino , Ratos Long-Evans , Proteínas Recombinantes/administração & dosagem , Retina , Células Ganglionares da Retina/efeitos dos fármacos , Células Ganglionares da Retina/metabolismo , Ativador de Plasminogênio Tecidual/administração & dosagem
4.
J Neurosci ; 32(15): 5186-99, 2012 Apr 11.
Artigo em Inglês | MEDLINE | ID: mdl-22496564

RESUMO

Tissue-type plasminogen activator (tPA) regulates physiological processes in the brain, such as learning and memory, and plays a critical role in neuronal survival and neuroinflammation in pathological conditions. Here we demonstrate, by combining mouse in vitro and in vivo data, that tPA is an important element of the cross talk between neurons and astrocytes. The data show that tPA released by neurons is constitutively endocytosed by astrocytes via the low-density lipoprotein-related protein receptor, and is then exocytosed in a regulated manner. The exocytotic recycling of tPA by astrocytes is inhibited in the presence of extracellular glutamate. Kainate receptors of astrocytes act as sensors of extracellular glutamate and, via a signaling pathway involving protein kinase C, modulate the exocytosis of tPA. Further, by thus capturing extracellular tPA, astrocytes serve to reduce NMDA-mediated responses potentiated by tPA. Overall, this work provides the first demonstration that the neuromodulator, tPA, may also be considered as a gliotransmitter.


Assuntos
Astrócitos/efeitos dos fármacos , Astrócitos/metabolismo , Ácido Glutâmico/farmacologia , Ácido Glutâmico/fisiologia , Transdução de Sinais/efeitos dos fármacos , Transdução de Sinais/fisiologia , Ativador de Plasminogênio Tecidual/metabolismo , Albuminas/metabolismo , Animais , Morte Celular/efeitos dos fármacos , Células Cultivadas , Clatrina/fisiologia , Dinaminas/fisiologia , Endocitose/efeitos dos fármacos , Endocitose/fisiologia , Citometria de Fluxo , Inativação Gênica , Imuno-Histoquímica , Proteína-1 Relacionada a Receptor de Lipoproteína de Baixa Densidade , Camundongos , Neurônios/efeitos dos fármacos , Neurônios/metabolismo , Neurônios/patologia , Plasmídeos/genética , Proteína Quinase C/metabolismo , RNA/biossíntese , RNA/isolamento & purificação , Reação em Cadeia da Polimerase em Tempo Real , Receptores de Ácido Caínico/efeitos dos fármacos , Receptores de Ácido Caínico/metabolismo , Receptores de LDL/metabolismo , Sinapsinas/metabolismo , Transfecção , Proteínas Supressoras de Tumor/metabolismo , alfa-Macroglobulinas/metabolismo
5.
J Cell Sci ; 124(Pt 12): 2070-6, 2011 Jun 15.
Artigo em Inglês | MEDLINE | ID: mdl-21610098

RESUMO

Owing to its ability to generate the clot-dissolving protease plasmin, tissue plasminogen activator (tPA) is the only approved drug for the acute treatment of ischemic stroke. However, tPA also promotes hemorrhagic transformation and excitotoxic events. High mobility group box-1 protein (HMGB-1) is a non-histone transcription factor and a pro-inflammatory cytokine, which has also been shown to bind to both tPA and plasminogen. We thus investigated the cellular and molecular effects through which HMGB-1 could influence the vascular and parenchymal effects of tPA during ischemia. We demonstrate that HMGB-1 not only increases clot lysis by tPA, but also reduces the passage of vascular tPA across the blood-brain barrier, as well as tPA-driven leakage of the blood-brain barrier. In addition, HMGB-1 prevents the pro-neurotoxic effect of tPA, by blocking its interaction with N-methyl-D-aspartate (NMDA) receptors and the attendant potentiation of NMDA-induced neuronal Ca²âº influx. In conclusion, we show in vitro that HMGB-1 can promote the beneficial effects of tPA while counteracting its deleterious properties. We suggest that derivatives of HMGB-1, devoid of pro-inflammatory properties, could be used as adjunctive therapies to improve the overall benefit of tPA-mediated thrombolysis following stroke.


Assuntos
Fibrinólise/efeitos dos fármacos , Proteína HMGB1/farmacologia , Ativador de Plasminogênio Tecidual/farmacologia , Animais , Biomarcadores/sangue , Barreira Hematoencefálica/citologia , Barreira Hematoencefálica/efeitos dos fármacos , Barreira Hematoencefálica/metabolismo , Cálcio/metabolismo , Bovinos , Células Cultivadas , Técnicas de Cocultura , Domínios HMG-Box , Proteína HMGB1/metabolismo , Humanos , Camundongos , N-Metilaspartato/farmacologia , Neurônios/efeitos dos fármacos , Neurônios/metabolismo , Fármacos Neuroprotetores/farmacologia , Ratos , Ratos Sprague-Dawley , Proteínas Recombinantes/farmacologia , Ativador de Plasminogênio Tecidual/metabolismo
6.
Transl Stroke Res ; 13(6): 1005-1016, 2022 12.
Artigo em Inglês | MEDLINE | ID: mdl-35307812

RESUMO

Intracranial aneurysms (IAs) are pathological dilatations affecting cerebral arteries, and their ruptures lead to devasting intracranial hemorrhages. Although the mechanisms underlying the IA formation and rupture are still unclear, some factors have been identified as critical in the control of the vascular remodeling pathways associated with aneurysms. In a preclinical model, we have previously proposed the implication of the vascular serine protease, the tissue-type plasminogen activator (tPA), as one of the key players in this pathology. Here, we provide insights into the mechanism by which tPA is implicated in the formation and rupture of aneurysms. This was addressed using a murine model of IAs combined with (i) hydrodynamic transfections of various tPA mutants based on the potential implications of the different tPA domains in this pathophysiology and (ii) a pharmacological approach using a monoclonal antibody targeting tPA-dependent NMDA receptor (NMDAR) signaling and in vivo magnetic resonance brain imaging (MRI). Our results show that the endovascular tPA-NMDAR axis is implicated in IA formation and possibly their rupture. Accordingly, the use of a monoclonal antibody designed to block tPA-dependent endothelial NMDAR signaling (Glunomab®) decreases the rate of intracranial aneurysm formation and their rupture. The present study gives new insights into the IA pathophysiology by demonstrating the implication of the tPA-dependent endothelial NMDAR signaling. In addition, the present data proposes that a monoclonal antibody injected intravenously to target this process, i.e., Glunomab® could be a useful therapeutic candidate for this devastating disease.


Assuntos
Aneurisma Roto , Aneurisma Intracraniano , Camundongos , Animais , Ativador de Plasminogênio Tecidual/uso terapêutico , Ativador de Plasminogênio Tecidual/farmacologia , Receptores de N-Metil-D-Aspartato/metabolismo , N-Metilaspartato , Incidência , Aneurisma Intracraniano/tratamento farmacológico , Aneurisma Intracraniano/epidemiologia , Anticorpos Monoclonais/metabolismo , Aneurisma Roto/complicações
7.
Stroke ; 42(8): 2315-22, 2011 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-21680906

RESUMO

BACKGROUND AND PURPOSE: Tissue-type plasminogen activator (tPA) is the only drug approved for the acute treatment of ischemic stroke but with two faces in the disease: beneficial fibrinolysis in the vasculature and damaging effects on the neurovascular unit and brain parenchyma. To improve this profile, we developed a novel strategy, relying on antibodies targeting the proneurotoxic effects of tPA. METHODS: After production and characterization of antibodies (αATD-NR1) that specifically prevent the interaction of tPA with the ATD-NR1 of N-methyl-d-aspartate receptors, we have evaluated their efficacy in a model of murine thromboembolic stroke with or without recombinant tPA-induced reperfusion, coupled to MRI, near-infrared fluorescence imaging, and behavior assessments. RESULTS: In vitro, αATD-NR1 prevented the proexcitotoxic effect of tPA without altering N-methyl-d-aspartate-induced neurotransmission. In vivo, after a single administration alone or with late recombinant tPA-induced thrombolysis, antibodies dramatically reduced brain injuries and blood-brain barrier leakage, thus improving long-term neurological outcome. CONCLUSIONS: Our strategy limits ischemic damages and extends the therapeutic window of tPA-driven thrombolysis. Thus, the prospect of this immunotherapy is an extension of the range of treatable patients.


Assuntos
Anticorpos/uso terapêutico , Isquemia Encefálica/tratamento farmacológico , Fibrinolíticos/uso terapêutico , Receptores de N-Metil-D-Aspartato/imunologia , Acidente Vascular Cerebral/tratamento farmacológico , Ativador de Plasminogênio Tecidual/uso terapêutico , Animais , Anticorpos/imunologia , Encéfalo/efeitos dos fármacos , Encéfalo/imunologia , Isquemia Encefálica/imunologia , Fibrinolíticos/imunologia , Camundongos , Acidente Vascular Cerebral/imunologia , Ativador de Plasminogênio Tecidual/imunologia
8.
Pharmaceutics ; 13(5)2021 May 20.
Artigo em Inglês | MEDLINE | ID: mdl-34065179

RESUMO

Ischemic stroke, caused by the interruption of blood flow to the brain and subsequent neuronal death, represents one of the main causes of disability in developed countries. Therapeutic methods such as recanalization approaches, neuroprotective drugs, or recovery strategies have been widely developed to improve the patient's outcome; however, important limitations such as a narrow therapeutic window, the ability to reach brain targets, or drug side effects constitute some of the main aspects that limit the clinical applicability of the current treatments. Nanotechnology has emerged as a promising tool to overcome many of these drug limitations and improve the efficacy of treatments for neurological diseases such as stroke. The use of nanoparticles as a contrast agent or as drug carriers to a specific target are some of the most common approaches developed in nanomedicine for stroke. Throughout this review, we have summarized our experience of using nanotechnology tools for the study of stroke and the search for novel therapies.

10.
J Cereb Blood Flow Metab ; 28(6): 1212-21, 2008 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-18334994

RESUMO

Current thrombolytic therapy for acute ischemic stroke with tissue-type plasminogen activator (tPA) has clear global benefits. Nevertheless, evidences argue that in addition to its prohemorrhagic effect, tPA might enhance excitotoxic necrosis. In the brain parenchyma, tPA, by binding to and then cleaving the amino-terminal domain (ATD) of the NR1 subunit of N-methyl-D-aspartate (NMDA) glutamate receptors, increases calcium influx to toxic levels. We show here that tPA binds the ATD of the NR1 subunit by a two-sites system (K(D)=24 nmol/L). Although tenecteplase (TNK) and reteplase also display two-sites binding profiles, the catalytically inactive mutant TNKS478A displays a one-site binding profile and desmoteplase (DSPA), a kringle 2 (K2) domain-free plasminogen activator derived from vampire bat, does not interact with NR1. Moreover, we show that in contrast to tPA, DSPA does not promote excitotoxicity. These findings, together with three-dimensional (3D) modeling, show that a critical step for interaction of tPA with NR1 is the binding of its K2 domain, followed by the binding of its catalytic domain, which in turn cleaves the NR1 subunit at its ATD, leading to a subsequent potentiation of NMDA-induced calcium influx and neurotoxicity. This could help design safer new generation thrombolytic agents for stroke treatment.


Assuntos
Fibrinolíticos/toxicidade , Receptores de N-Metil-D-Aspartato/metabolismo , Acidente Vascular Cerebral/metabolismo , Sequência de Aminoácidos , Animais , Domínio Catalítico , Células Cultivadas , Efeitos Colaterais e Reações Adversas Relacionados a Medicamentos , Camundongos , Modelos Moleculares , Dados de Sequência Molecular , Neurônios/efeitos dos fármacos , Neurônios/metabolismo , Ativadores de Plasminogênio/metabolismo , Ligação Proteica , Estrutura Quaternária de Proteína , Receptores de N-Metil-D-Aspartato/química , Receptores de N-Metil-D-Aspartato/genética , Transdução de Sinais , Técnicas de Cultura de Tecidos , Ativador de Plasminogênio Tecidual/química , Ativador de Plasminogênio Tecidual/metabolismo
11.
J Cereb Blood Flow Metab ; 38(7): 1180-1189, 2018 07.
Artigo em Inglês | MEDLINE | ID: mdl-28741405

RESUMO

Intracerebral hemorrhage (ICH) is the most severe form of stroke. Catheter-delivered thrombolysis with recombinant tissue-type plasminogen activator (rtPA) for the drainage of ICH is currently under evaluation in a phase III clinical trial (MISTIE III). However, in a pig model of ICH, in situ fibrinolysis with rtPA was reported to increase peri-lesional edema by promoting N-methyl-D-aspartate (NMDA)-dependent excitotoxicity. In the present study, we engineered a non-neurotoxic tPA variant, OptPA, and investigated its safety and efficacy for in situ fibrinolysis in a rat model of ICH. Magnetic resonance imaging analyses of hematoma and edema volumes, behavioral tasks and histological analyses were performed to measure the effects of treatments. In vitro, OptPA was equally fibrinolytic as rtPA without promoting NMDA-dependent neurotoxicity. In vivo, in situ fibrinolysis using OptPA reduced hematoma volume, like rtPA, but it also reduced the evolution of peri-hematomal neuronal death and subsequent edema progression. Overall, this preclinical study demonstrates beneficial effects of OptPA compared to rtPA for the drainage of ICH.


Assuntos
Edema Encefálico/tratamento farmacológico , Hemorragia Cerebral/tratamento farmacológico , Fibrinolíticos/farmacologia , Ativador de Plasminogênio Tecidual/farmacologia , Animais , Edema Encefálico/metabolismo , Edema Encefálico/patologia , Hemorragia Cerebral/metabolismo , Hemorragia Cerebral/patologia , Ensaios Clínicos Fase III como Assunto , Modelos Animais de Doenças , Avaliação Pré-Clínica de Medicamentos , Humanos , Masculino , Camundongos , Engenharia de Proteínas , Proteínas Recombinantes/genética , Proteínas Recombinantes/farmacologia , Suínos , Ativador de Plasminogênio Tecidual/genética
12.
Cell Death Differ ; 24(9): 1518-1529, 2017 09.
Artigo em Inglês | MEDLINE | ID: mdl-28644439

RESUMO

The unfolded protein response (UPR) is an endoplasmic reticulum (ER) -related stress conserved pathway that aims to protect cells from being overwhelmed. However, when prolonged, UPR activation converts to a death signal, which relies on its PERK-eIF2α branch. Overactivation of the UPR has been implicated in many neurological diseases, including cerebral ischaemia. Here, by using an in vivo thromboembolic model of stroke on transgenic ER stress-reporter mice and neuronal in vitro models of ischaemia, we demonstrate that ischaemic stress leads to the deleterious activation of the PERK branch of the UPR. Moreover, we show that the serine protease tissue-type plasminogen activator (tPA) can bind to cell surface Grp78 (78 kD glucose-regulated protein), leading to a decrease of the PERK pathway activation, thus a decrease of the deleterious factor CHOP, and finally promotes neuroprotection. Altogether, this work highlights a new role and a therapeutic potential of the chaperone protein Grp78 as a membrane receptor of tPA capable to prevent from ER stress overactivation.


Assuntos
Estresse do Retículo Endoplasmático/efeitos dos fármacos , Proteínas de Choque Térmico/metabolismo , Neurônios/citologia , Neurônios/metabolismo , Fator 4 Ativador da Transcrição/metabolismo , Animais , Apoptose/efeitos dos fármacos , Morte Celular/efeitos dos fármacos , Chaperona BiP do Retículo Endoplasmático , Fibrinolíticos/farmacologia , Camundongos , Neurônios/efeitos dos fármacos , Proteínas Serina-Treonina Quinases/metabolismo , Transdução de Sinais/efeitos dos fármacos , Tromboembolia/terapia , Ativador de Plasminogênio Tecidual/farmacologia , Resposta a Proteínas não Dobradas/efeitos dos fármacos
13.
Theranostics ; 6(5): 610-26, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-27022410

RESUMO

Cell-derived microparticles (MPs) are nano-sized vesicles released by activated cells in the extracellular milieu. They act as vectors of biological activity by carrying membrane-anchored and cytoplasmic constituents of the parental cells. Although detection and characterization of cell-derived MPs may be of high diagnostic and prognostic values in a number of human diseases, reliable measurement of their size, number and biological activity still remains challenging using currently available methods. In the present study, we developed a protocol to directly image and functionally characterize MPs using high-resolution laser-scanning confocal microscopy. Once trapped on annexin-V coated micro-wells, we developed several assays using fluorescent reporters to measure their size, detect membrane antigens and evaluate proteolytic activity (nano-zymography). In particular, we demonstrated the applicability and specificity of this method to detect antigens and proteolytic activities of tissue-type plasminogen activator (tPA), urokinase and plasmin at the surface of engineered MPs from transfected cell-lines. Furthermore, we were able to identify a subset of tPA-bearing fibrinolytic MPs using plasma samples from a cohort of ischemic stroke patients who received thrombolytic therapy and in an experimental model of thrombin-induced ischemic stroke in mice. Overall, this method is promising for functional characterization of cell-derived MPs.


Assuntos
Micropartículas Derivadas de Células/química , Micropartículas Derivadas de Células/enzimologia , Microscopia Confocal/métodos , Animais , Modelos Animais de Doenças , Humanos , Camundongos , Peptídeo Hidrolases/análise , Plasma/química , Acidente Vascular Cerebral/patologia
14.
Front Cell Neurosci ; 9: 415, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-26528141

RESUMO

Tissue-type plasminogen activator (tPA) a serine protease is constituted of five functional domains through which it interacts with different substrates, binding proteins, and receptors. In the last years, great interest has been given to the clinical relevance of targeting tPA in different diseases of the central nervous system, in particular stroke. Among its reported functions in the central nervous system, tPA displays both neurotrophic and neurotoxic effects. How can the protease mediate such opposite functions remain unclear but several hypotheses have been proposed. These include an influence of the degree of maturity and/or the type of neurons, of the level of tPA, of its origin (endogenous or exogenous) or of its form (single chain tPA versus two chain tPA). In this review, we will provide a synthetic snapshot of our current knowledge regarding the natural history of tPA and discuss how it sustains its pleiotropic functions with focus on excitotoxic/ischemic neuronal death and neuronal survival.

15.
J Exp Med ; 208(6): 1229-42, 2011 Jun 06.
Artigo em Inglês | MEDLINE | ID: mdl-21576385

RESUMO

Tissue plasminogen activator (tPA) is the only available treatment for acute stroke. In addition to its vascular fibrinolytic action, tPA exerts various effects within the brain, ranging from synaptic plasticity to control of cell fate. To date, the influence of tPA in the ischemic brain has only been investigated on neuronal, microglial, and endothelial fate. We addressed the mechanism of action of tPA on oligodendrocyte (OL) survival and on the extent of white matter lesions in stroke. We also investigated the impact of aging on these processes. We observed that, in parallel to reduced levels of tPA in OLs, white matter gets more susceptible to ischemia in old mice. Interestingly, tPA protects murine and human OLs from apoptosis through an unexpected cytokine-like effect by the virtue of its epidermal growth factor-like domain. When injected into aged animals, tPA, although toxic to the gray matter, rescues white matter from ischemia independently of its proteolytic activity. These studies reveal a novel mechanism of action of tPA and unveil OL as a target cell for cytokine effects of tPA in brain diseases. They show overall that tPA protects white matter from stroke-induced lesions, an effect which may contribute to the global benefit of tPA-based stroke treatment.


Assuntos
Apoptose , Lesões Encefálicas/patologia , Encéfalo/patologia , Acidente Vascular Cerebral/patologia , Ativador de Plasminogênio Tecidual/metabolismo , Envelhecimento , Animais , Caspase 3/metabolismo , Linhagem da Célula , Citocinas/metabolismo , Endotélio Vascular/citologia , Fator de Crescimento Epidérmico/química , MAP Quinases Reguladas por Sinal Extracelular/metabolismo , Humanos , Camundongos , Camundongos Endogâmicos C57BL , Oligodendroglia/citologia
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa