Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Sensors (Basel) ; 22(17)2022 Sep 03.
Artigo em Inglês | MEDLINE | ID: mdl-36081142

RESUMO

Reactive oxygen species (ROS) are key drivers of biogeochemical cycling while also exhibiting both positive and negative effects on marine ecosystem health. However, quantification of the ROS superoxide (O2-) within environmental systems is hindered by its short half-life. Recently, the development of the diver-operated submersible chemiluminescent sensor (DISCO), a submersible, handheld instrument, enabled in situ superoxide measurements in real time within shallow coral reef ecosystems. Here, we present a redesigned and improved instrument, DISCO II. Similar to the previous DISCO, DISCO II is a self-contained, submersible sensor, deployable to 30 m depth and capable of measuring reactive intermediate species in real time. DISCO II is smaller, lighter, lower cost, and more robust than its predecessor. Laboratory validation of DISCO II demonstrated an average limit of detection in natural seawater of 133.1 pM and a percent variance of 0.7%, with stable photo multiplier tube (PMT) counts, internal temperature, and flow rates. DISCO II can also be optimized for diverse environmental conditions by adjustment of the PMT supply voltage and integration time. Field tests showed no drift in the data with a percent variance of 3.0%. Wand tip adaptations allow for in situ calibrations and decay rates of superoxide using a chemical source of superoxide (SOTS-1). Overall, DISCO II is a versatile, user-friendly sensor that enables measurements in diverse environments, thereby improving our understanding of the cycling of reactive intermediates, such as ROS, across various marine ecosystems.


Assuntos
Ecossistema , Superóxidos , Recifes de Corais , Espécies Reativas de Oxigênio , Água do Mar
2.
Opt Express ; 28(12): 17741-17756, 2020 Jun 08.
Artigo em Inglês | MEDLINE | ID: mdl-32679978

RESUMO

The identification of plastic type is important for environmental applications ranging from recycling to understanding the fate of plastics in marine, atmospheric, and terrestrial environments. Infrared reflectance spectroscopy is a powerful approach for plastics identification, requiring only optical access to a sample. The use of visible and near-infrared wavelengths for plastics identification are limiting as dark colored plastics absorb at these wavelengths, producing no reflectance spectra. The use of mid-infrared wavelengths instead enables dark plastics to be identified. Here we demonstrate the capability to utilize a pulsed, widely-tunable (5.59 - 7.41 µm) mid-infrared quantum cascade laser, as the source for reflectance spectroscopy, for the rapid and robust identification of plastics. Through the application of linear discriminant analysis to the resulting spectral data set, we demonstrate that we can correctly classify five plastic types: polyethylene terephthalate (PET), high density polyethylene (HDPE), low density polyethylene (LDPE), polypropylene (PP), and polystyrene (PS), with a 97% accuracy rate.

3.
PNAS Nexus ; 2(11): pgad398, 2023 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-38034097

RESUMO

Reactive oxygen species (ROS) are central to diverse biological processes through which organisms respond to and interact with their surroundings. Yet, a lack of direct measurements limits our understanding of the distribution of ROS in the ocean. Using a recently developed in situ sensor, we show that deep-sea corals and sponges produce the ROS superoxide, revealing that benthic organisms can be sources and hotspots of ROS production in these environments. These findings confirm previous contentions that extracellular superoxide production by corals can be independent of the activity of photosynthetic symbionts. The discovery of deep-sea corals and sponges as sources of ROS has implications for the physiology and ecology of benthic organisms and introduces a previously overlooked suite of redox reactants at depth.

SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa