Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 72
Filtrar
1.
Molecules ; 29(10)2024 May 09.
Artigo em Inglês | MEDLINE | ID: mdl-38792081

RESUMO

Prolylcarboxypeptidase (PRCP, PCP, Lysosomal Pro-X-carboxypeptidase, Angiotensinase C) controls angiotensin- and kinin-induced cell signaling. Elevation of PRCP appears to be activated in chronic inflammatory diseases [cardiovascular disease (CVD), diabetes] in proportion to severity. Vascular endothelial cell senescence and mitochondrial dysfunction have consistently been shown in models of CVD in aging. Cellular senescence, a driver of age-related dysfunction, can differentially alter the expression of lysosomal enzymes due to lysosomal membrane permeability. There is a lack of data demonstrating the effect of age-related dysfunction on the expression and function of PRCP. To explore the changes in PRCP, the PRCP-dependent prekallikrein (PK) pathway was characterized in early- and late-passage human pulmonary artery endothelial cells (HPAECs). Detailed kinetic analysis of cells treated with high molecular weight kininogen (HK), a precursor of bradykinin (BK), and PK revealed a mechanism by which senescent HPAECs activate the generation of kallikrein upon the assembly of the HK-PK complex on HPAECs in parallel with an upregulation of PRCP and endothelial nitric oxide (NO) synthase (eNOS) and NO formation. The NO production and expression of both PRCP and eNOS increased in early-passage HPAECs and decreased in late-passage HPAECs. Low activity of PRCP in late-passage HPAECs was associated with rapid decreased telomerase reverse transcriptase mRNA levels. We also found that, with an increase in the passage number of HPAECs, reduced PRCP altered the respiration rate. These results indicated that aging dysregulates PRCP protein expression, and further studies will shed light into the complexity of the PRCP-dependent signaling pathway in aging.


Assuntos
Biomarcadores , Carboxipeptidases , Senescência Celular , Células Endoteliais , Humanos , Células Endoteliais/metabolismo , Biomarcadores/metabolismo , Carboxipeptidases/metabolismo , Carboxipeptidases/genética , Pré-Calicreína/metabolismo , Pré-Calicreína/genética , Bradicinina/farmacologia , Bradicinina/metabolismo , Artéria Pulmonar/metabolismo , Artéria Pulmonar/citologia , Células Cultivadas , Cininogênio de Alto Peso Molecular/metabolismo , Transdução de Sinais , Óxido Nítrico Sintase Tipo III/metabolismo , Óxido Nítrico Sintase Tipo III/genética , Calicreínas/metabolismo , Calicreínas/genética
2.
Glycoconj J ; 40(1): 33-46, 2023 02.
Artigo em Inglês | MEDLINE | ID: mdl-36454453

RESUMO

Marcia hiantina (Mollusca, Bivalvia) (Lamarck, 1818), is an edible clam mainly distributed along the tropical coastal regions. Recent researches have demonstrated that clams can possess compounds, including polysaccharides, with a wide range of biological actions including antioxidant, immunomodulatory and antitumor activities. Here an α-glucan was isolated from M. hiantina by hot water, purified by anion exchange chromatography, and its structure was characterized by a combination of multiple nuclear magnetic resonance (NMR) methods (1D 1H, 1H-1H COSY, 1H-1H TOCSY, 1H-1H NOESY, 1H-13C HSQC and 1H-13C HSQC-NOESY spectra), gas chromatography-mass spectrometry, and high performance size exclusion chromatography (HPSEC). The analysis from NMR, monosaccharide composition, methylation analyses and HPSEC combined with multi-angle light scattering (MALS) of M. hiantina-derived α-glycan confirmed a branched polysaccharide exclusively composed of glucose (Glc), mostly 4-linked in its backbone, branched occasionally at 6-positions, and having a molecular weight of ~ 570 kDa. The mollusk α-glucan was subjected to four cell-based assays: (i) viability of three cell lines (RAW264.7, HaCaT, and HT-29), (ii) activity on lipopolysaccharide (LPS)-induced prostaglandin production in RAW264.7 cells, (iii) inhibitory activities of in H2O2- and LPS-induced reactive oxygen species (ROS) production in HMC3 cells, and (iv) HaCaT cell proliferation. Results have indicated no cytotoxicity, potent inhibition of both H2O2- and LPS-induced ROS, and potent cell proliferative activity.


Assuntos
Bivalves , Glucanos , Animais , Glucanos/química , Lipopolissacarídeos , Espécies Reativas de Oxigênio , Peróxido de Hidrogênio , Polissacarídeos/química , Cromatografia em Gel
3.
Bioorg Med Chem ; 78: 117137, 2023 01 15.
Artigo em Inglês | MEDLINE | ID: mdl-36603398

RESUMO

In cancer cells, glutaminolysis is the primary source of biosynthetic precursors. Recent efforts to develop amino acid analogues to inhibit glutamine metabolism in cancer have been extensive. Our lab recently discovered many L-γ-methyleneglutamic acid amides that were shown to be as efficacious as tamoxifen or olaparib in inhibiting the cell growth of MCF-7, SK-BR-3, and MDA-MB-231 breast cancer cells after 24 or 72 h of treatment. None of these compounds inhibited the cell growth of nonmalignant MCF-10A breast cells. These L-γ-methyleneglutamic acid amides hold promise as novel therapeutics for the treatment of multiple subtypes of breast cancer. Herein, we report our synthesis and evaluation of two series of tert-butyl ester and ethyl ester prodrugs of these L-γ-methyleneglutamic acid amides and the cyclic metabolite and its tert-butyl esters and ethyl esters on the three breast cancer cell lines MCF-7, SK-BR-3, and MDA-MB-231 and the nonmalignant MCF-10A breast cell line. These esters were found to suppress the growth of the breast cancer cells, but they were less potent compared to the L-γ-methyleneglutamic acid amides. Pharmacokinetic (PK) studies were carried out on the lead L-γ-methyleneglutamic acid amide to establish tissue-specific distribution and other PK parameters. Notably, this lead compound showed moderate exposure to the brain with a half-life of 0.74 h and good tissue distribution, such as in the kidney and liver. Therefore, the L-γ-methyleneglutamic acid amides were then tested on glioblastoma cell lines BNC3 and BNC6 and head and neck cancer cell lines HN30 and HN31. They were found to effectively suppress the growth of these cancer cell lines after 24 or 72 h of treatment in a concentration-dependent manner. These results suggest broad applications of the L-γ-methyleneglutamic acid amides in anticancer therapy.


Assuntos
Neoplasias da Mama , Pró-Fármacos , Humanos , Feminino , Amidas/química , Pró-Fármacos/farmacologia , Ésteres/farmacologia , Ésteres/química , Aminoácidos , Neoplasias da Mama/patologia , Linhagem Celular Tumoral
4.
J Nat Prod ; 86(7): 1786-1792, 2023 07 28.
Artigo em Inglês | MEDLINE | ID: mdl-37450763

RESUMO

Bioassay-guided fractionation of the essential oil of Santalum album led to the identification of α-santalol (1) and ß-santalol (2) as new chemotypes of cannabinoid receptor type II (CB2) ligands with Ki values of 10.49 and 8.19 µM, respectively. Nine structurally new α-santalol derivatives (4a-4h and 5) were synthesized to identify more selective and potent CB2 ligands. Compound 4e with a piperazine structural moiety demonstrated a Ki value of 0.99 µM against CB2 receptor and did not show binding activity against cannabinoid receptor type I (CB1) at 10 µM. Compounds 1, 2, and 4e increased intracellular calcium influx in SH-SY5Y human neuroblastoma cells that were attenuated by CB2 antagonism or inverse agonism, supporting the results that these compounds are CB2 agonists. Molecular docking showed that 1 and 4e had similar binding poses, exhibiting a unique interaction with Thr114 within the CB2 receptor, and that the piperazine structural moiety is required for the binding affinity of 4e. A 200 ns molecular dynamics simulation of CB2 complexed with 4e confirmed the stability of the complex. This structural insight lays a foundation to further design and synthesize more potent and selective α-santalol-based CB2 ligands for drug discovery.


Assuntos
Agonismo Inverso de Drogas , Neuroblastoma , Humanos , Simulação de Acoplamento Molecular , Ligantes , Receptores de Canabinoides , Piperazinas/farmacologia , Receptor CB2 de Canabinoide , Receptor CB1 de Canabinoide , Estrutura Molecular , Relação Estrutura-Atividade
5.
Molecules ; 27(2)2022 Jan 14.
Artigo em Inglês | MEDLINE | ID: mdl-35056824

RESUMO

Modulation of the endocannabinoid system (ECS) is of great interest for its therapeutic relevance in several pathophysiological processes. The CB2 subtype is largely localized to immune effectors, including microglia within the central nervous system, where it promotes anti-inflammation. Recently, a rational drug design toward precise modulation of the CB2 active site revealed the novelty of Pyrrolo[2,1-c][1,4]benzodiazepines tricyclic chemotype with a high conformational similarity in comparison to the existing leads. These compounds are structurally unique, confirming their chemotype novelty. In our continuing search for new chemotypes as selective CB2 regulatory molecules, following SAR approaches, a total of 17 selected (S,E)-11-[2-(arylmethylene)hydrazono]-PBD analogs were synthesized and tested for their ability to bind to the CB1 and CB2 receptor orthosteric sites. A competitive [3H]CP-55,940 binding screen revealed five compounds that exhibited >60% displacement at 10 µM concentration. Further concentration-response analysis revealed two compounds, 4k and 4q, as potent and selective CB2 ligands with sub-micromolar activities (Ki = 146 nM and 137 nM, respectively). In order to support the potential efficacy and safety of the analogs, the oral and intravenous pharmacokinetic properties of compound 4k were sought. Compound 4k was orally bioavailable, reaching maximum brain concentrations of 602 ± 162 ng/g (p.o.) with an elimination half-life of 22.9 ± 3.73 h. Whether administered via the oral or intravenous route, the elimination half-lives ranged between 9.3 and 16.7 h in the liver and kidneys. These compounds represent novel chemotypes, which can be further optimized for improved affinity and selectivity toward the CB2 receptor.


Assuntos
Benzodiazepinas/administração & dosagem , Encéfalo/metabolismo , Desenho de Fármacos , Endocanabinoides/metabolismo , Rim/metabolismo , Fígado/metabolismo , Pirróis/administração & dosagem , Receptores de Canabinoides/metabolismo , Administração Oral , Animais , Benzodiazepinas/química , Sítios de Ligação , Ligantes , Masculino , Camundongos , Modelos Moleculares , Pirróis/química , Receptores de Canabinoides/química , Relação Estrutura-Atividade
6.
Horm Behav ; 119: 104649, 2020 03.
Artigo em Inglês | MEDLINE | ID: mdl-31821792

RESUMO

The majority of HIV+ patients present with neuroendocrine dysfunction and ~50% experience co-morbid neurological symptoms including motor, affective, and cognitive dysfunction, collectively termed neuroHIV. In preclinical models, the neurotoxic HIV-1 regulatory protein, trans-activator of transcription (Tat), promotes neuroHIV pathology that can be exacerbated by opioids. We and others find gonadal steroids, estradiol (E2) or progesterone (P4), to rescue Tat-mediated pathology. However, the combined effects of Tat and opioids on neuroendocrine function and the subsequent ameliorative capacity of gonadal steroids are unknown. We found that conditional HIV-1 Tat expression in naturally-cycling transgenic mice dose-dependently potentiated oxycodone-mediated psychomotor behavior. Tat increased depression-like behavior in a tail-suspension test among proestrous mice, but decreased it among diestrous mice (who already demonstrated greater depression-like behavior); oxycodone reversed these effects. Combined Tat and oxycodone produced apparent behavioral disinhibition of anxiety-like responding which was greater on diestrus than on proestrus. These mice made more central entries in an open field, but spent less time there and demonstrated greater circulating corticosterone. Tat increased the E2:P4 ratio of circulating steroids on diestrus and acute oxycodone attenuated this effect, but repeated oxycodone exacerbated it. Corticotropin-releasing factor was increased by Tat expression, acute oxycodone exposure, and was greater on diestrus compared to proestrus. In human neuroblastoma cells, Tat exerted neurotoxicity that was ameliorated by E2 (1 or 10 nM) or P4 (100, but not 10 nM) independent of oxycodone. Oxycodone decreased gene expression of estrogen and κ-opioid receptors. Thus, neuroendocrine function may be an important target for HIV-1 Tat/opioid interactions.


Assuntos
Gônadas/efeitos dos fármacos , Sistema Hipotálamo-Hipofisário/efeitos dos fármacos , Síndromes Neurotóxicas , Oxicodona/efeitos adversos , Sistema Hipófise-Suprarrenal/efeitos dos fármacos , Produtos do Gene tat do Vírus da Imunodeficiência Humana/efeitos adversos , Animais , Ansiedade/fisiopatologia , Ansiedade/psicologia , Disfunção Cognitiva/induzido quimicamente , Disfunção Cognitiva/patologia , Disfunção Cognitiva/fisiopatologia , Combinação de Medicamentos , Feminino , Hormônios Esteroides Gonadais/fisiologia , Gônadas/fisiologia , Infecções por HIV/complicações , Infecções por HIV/fisiopatologia , Infecções por HIV/psicologia , HIV-1/fisiologia , Humanos , Sistema Hipotálamo-Hipofisário/fisiologia , Camundongos , Camundongos Transgênicos , Transtornos do Humor/induzido quimicamente , Transtornos do Humor/patologia , Transtornos do Humor/fisiopatologia , Síndromes Neurotóxicas/genética , Síndromes Neurotóxicas/fisiopatologia , Síndromes Neurotóxicas/psicologia , Oxicodona/administração & dosagem , Sistema Hipófise-Suprarrenal/fisiologia , Transtornos Psicomotores/induzido quimicamente , Transtornos Psicomotores/patologia , Transtornos Psicomotores/fisiopatologia , Células Tumorais Cultivadas , Produtos do Gene tat do Vírus da Imunodeficiência Humana/administração & dosagem , Produtos do Gene tat do Vírus da Imunodeficiência Humana/genética
7.
Int J Mol Sci ; 21(21)2020 Nov 03.
Artigo em Inglês | MEDLINE | ID: mdl-33153023

RESUMO

Human immunodeficiency virus (HIV) is associated with co-morbid affective and stress-sensitive neuropsychiatric disorders that may be related to dysfunction of the hypothalamic-pituitary-adrenal (HPA) stress axis. The HPA axis is perturbed in up to 46% of HIV patients, but the mechanisms are not known. The neurotoxic HIV-1 regulatory protein, trans-activator of transcription (Tat), may contribute. We hypothesized that HPA dysregulation may contribute to Tat-mediated interactions with oxycodone, a clinically-used opioid often prescribed to HIV patients. In transgenic male mice, Tat expression produced significantly higher basal corticosterone levels with adrenal insufficiency in response to a natural stressor or pharmacological blockade of HPA feedback, recapitulating the clinical phenotype. On acute exposure, HIV-1 Tat interacted with oxycodone to potentiate psychomotor and anxiety like-behavior in an open field and light-dark transition tasks, whereas repeated exposure sensitized stress-related psychomotor behavior and the HPA stress response. Pharmacological blockade of glucocorticoid receptors (GR) partially-restored the stress response and decreased oxycodone-mediated psychomotor behavior in Tat-expressing mice, implicating GR in these effects. Blocking corticotrophin-releasing factor (CRF) receptors reduced anxiety-like behavior in mice that were exposed to oxycodone. Together, these effects support the notion that Tat exposure can dysregulate the HPA axis, potentially raising vulnerability to stress-related substance use and affective disorders.


Assuntos
Transtornos de Ansiedade/etiologia , Sistema Hipotálamo-Hipofisário/metabolismo , Oxicodona/efeitos adversos , Sistema Hipófise-Suprarrenal/metabolismo , Transtornos Psicomotores/etiologia , Produtos do Gene tat do Vírus da Imunodeficiência Humana/fisiologia , Animais , Transtornos de Ansiedade/induzido quimicamente , Transtornos de Ansiedade/metabolismo , Transtornos de Ansiedade/patologia , Depressão/etiologia , Depressão/metabolismo , Depressão/patologia , Progressão da Doença , Interações Medicamentosas , Infecções por HIV/complicações , Infecções por HIV/metabolismo , Infecções por HIV/patologia , Infecções por HIV/psicologia , HIV-1/fisiologia , Hidrocortisona/metabolismo , Sistema Hipotálamo-Hipofisário/efeitos dos fármacos , Sistema Hipotálamo-Hipofisário/patologia , Masculino , Camundongos , Camundongos Transgênicos , Transtornos do Humor/etiologia , Transtornos do Humor/metabolismo , Transtornos do Humor/patologia , Sistema Hipófise-Suprarrenal/efeitos dos fármacos , Sistema Hipófise-Suprarrenal/patologia , Transtornos Psicomotores/induzido quimicamente , Transtornos Psicomotores/patologia , Transtornos Psicomotores/virologia , Estresse Psicológico/induzido quimicamente , Estresse Psicológico/genética , Estresse Psicológico/metabolismo , Estresse Psicológico/patologia , Produtos do Gene tat do Vírus da Imunodeficiência Humana/genética , Produtos do Gene tat do Vírus da Imunodeficiência Humana/farmacologia
8.
J Neurochem ; 149(1): 98-110, 2019 04.
Artigo em Inglês | MEDLINE | ID: mdl-30674062

RESUMO

Myelin disruptions are frequently reported in human immunodeficiency virus (HIV)-infected individuals and can occur in the CNS very early in the disease process. Immature oligodendrocytes (OLs) are quite sensitive to toxic increases in [Ca2+ ]i caused by exposure to HIV-1 Tat (transactivator of transcription, a protein essential for HIV replication and gene expression), but sensitivity to Tat-induced [Ca2+ ]i is reduced in mature OLs. Tat exposure also increased the activity of Ca2+ /calmodulin-dependent kinase IIß (CaMKIIß), the major isoform of CaMKII expressed by OLs, in both immature and mature OLs. Since CaMKIIß is reported to interact with glycogen synthase kinase 3ß (GSK3ß), and GSK3ß activity is implicated in OL apoptosis as well as HIV neuropathology, we hypothesized that disparate effects of Tat on OL viability with maturity might be because of an altered balance of CaMKIIß-GSK3ß activities. Tat expression in vivo led to increased CaMKIIß and GSK3ß activity in multiple brain regions in transgenic mice. In vitro, immature murine OLs expressed higher levels of GSK3ß, but much lower levels of CaMKIIß, than did mature OLs. Exogenous Tat up-regulated GSK3ß activity in immature, but not mature, OLs. Tat-induced death of immature OLs was rescued by the GSK3ß inhibitors valproic acid or SB415286, supporting involvement of GSK3ß signaling. Pharmacologically inhibiting CaMKIIß increased GSK3ß activity in Tat-treated OLs, and genetically knocking down CaMKIIß promoted death in mature OL cultures treated with Tat. Together, these results suggest that the effects of Tat on OL viability are dependent on CaMKIIß-GSK3ß interactions, and that increasing CaMKIIß activity is a potential approach for limiting OL/myelin injury with HIV infection.


Assuntos
Proteína Quinase Tipo 2 Dependente de Cálcio-Calmodulina/metabolismo , Glicogênio Sintase Quinase 3 beta/metabolismo , Infecções por HIV/metabolismo , Oligodendroglia/metabolismo , Produtos do Gene tat do Vírus da Imunodeficiência Humana/metabolismo , Animais , Sobrevivência Celular , Infecções por HIV/patologia , HIV-1 , Camundongos , Camundongos Transgênicos , Oligodendroglia/patologia
9.
J Neurovirol ; 25(4): 560-577, 2019 08.
Artigo em Inglês | MEDLINE | ID: mdl-31102185

RESUMO

Poor antiretroviral penetration may contribute to human immunodeficiency virus (HIV) persistence within the brain and to neurocognitive deficits in opiate abusers. To investigate this problem, HIV-1 Tat protein and morphine effects on blood-brain barrier (BBB) permeability and drug brain penetration were explored using a conditional HIV-1 Tat transgenic mouse model. Tat and morphine effects on the leakage of fluorescently labeled dextrans (10-, 40-, and 70-kDa) into the brain were assessed. To evaluate effects on antiretroviral brain penetration, Tat+ and Tat- mice received three antiretroviral drugs (dolutegravir, abacavir, and lamivudine) with or without concurrent morphine exposure. Antiretroviral and morphine brain and plasma concentrations were determined by LC-MS/MS. Morphine exposure, and, to a lesser extent, Tat, significantly increased tracer leakage from the vasculature into the brain. Despite enhanced BBB breakdown evidenced by increased tracer leakiness, morphine exposure led to significantly lower abacavir concentrations within the striatum and significantly less dolutegravir within the hippocampus and striatum (normalized to plasma). P-glycoprotein, an efflux transporter for which these drugs are substrates, expression and function were significantly increased in the brains of morphine-exposed mice compared to mice not exposed to morphine. These findings were consistent with lower antiretroviral concentrations in brain tissues examined. Lamivudine concentrations were unaffected by Tat or morphine exposure. Collectively, our investigations indicate that Tat and morphine differentially alter BBB integrity. Morphine decreased brain concentrations of specific antiretroviral drugs, perhaps via increased expression of the drug efflux transporter, P-glycoprotein.


Assuntos
Fármacos Anti-HIV/farmacocinética , Barreira Hematoencefálica/efeitos dos fármacos , HIV-1/genética , Morfina/efeitos adversos , Produtos do Gene tat do Vírus da Imunodeficiência Humana/biossíntese , Membro 1 da Subfamília B de Cassetes de Ligação de ATP/genética , Membro 1 da Subfamília B de Cassetes de Ligação de ATP/metabolismo , Animais , Transporte Biológico/efeitos dos fármacos , Barreira Hematoencefálica/metabolismo , Barreira Hematoencefálica/virologia , Permeabilidade Capilar , Corpo Estriado/efeitos dos fármacos , Corpo Estriado/metabolismo , Corpo Estriado/virologia , Dextranos/farmacocinética , Didesoxinucleosídeos/farmacocinética , Feminino , Fluoresceína-5-Isotiocianato/análogos & derivados , Fluoresceína-5-Isotiocianato/farmacocinética , Infecções por HIV/metabolismo , Infecções por HIV/psicologia , Infecções por HIV/virologia , HIV-1/metabolismo , Compostos Heterocíclicos com 3 Anéis/farmacocinética , Hipocampo/efeitos dos fármacos , Hipocampo/metabolismo , Hipocampo/virologia , Lamivudina/farmacocinética , Camundongos , Camundongos Transgênicos , Modelos Biológicos , Transtornos Neurocognitivos/metabolismo , Transtornos Neurocognitivos/psicologia , Transtornos Neurocognitivos/virologia , Oxazinas , Piperazinas , Piridonas , Produtos do Gene tat do Vírus da Imunodeficiência Humana/genética
10.
J Neurosci ; 37(23): 5758-5769, 2017 06 07.
Artigo em Inglês | MEDLINE | ID: mdl-28473642

RESUMO

Despite marked regional differences in HIV susceptibility within the CNS, there has been surprisingly little exploration into the differential vulnerability among neuron types and the circuits they underlie. The dorsal striatum is especially susceptible, harboring high viral loads and displaying marked neuropathology, with motor impairment a frequent manifestation of chronic infection. However, little is known about the response of individual striatal neuron types to HIV or how this disrupts function. Therefore, we investigated the morphological and electrophysiological effects of HIV-1 trans-activator of transcription (Tat) in dopamine subtype 1 (D1) and dopamine subtype 2 (D2) receptor-expressing striatal medium spiny neurons (MSNs) by breeding transgenic Tat-expressing mice to Drd1a-tdTomato- or Drd2-eGFP-reporter mice. An additional goal was to examine neuronal vulnerability early during the degenerative process to gain insight into key events underlying the neuropathogenesis. In D2 MSNs, exposure to HIV-1 Tat reduced dendritic spine density significantly, increased dendritic damage (characterized by swellings/varicosities), and dysregulated neuronal excitability (decreased firing at 200-300 pA and increased firing rates at 450 pA), whereas insignificant morphologic and electrophysiological consequences were observed in Tat-exposed D1 MSNs. These changes were concomitant with an increased anxiety-like behavioral profile (lower latencies to enter a dark chamber in a light-dark transition task, a greater frequency of light-dark transitions, and reduced rearing time in an open field), whereas locomotor behavior was unaffected by 2 weeks of Tat induction. Our findings suggest that D2 MSNs and a specific subset of neural circuits within the dorsal striatum are preferentially vulnerable to HIV-1.SIGNIFICANCE STATEMENT Despite combination antiretroviral therapy (cART), neurocognitive disorders afflict 30-50% of HIV-infected individuals and synaptodendritic injury remains evident in specific brain regions such as the dorsal striatum. A possible explanation for the sustained neuronal injury is that the neurotoxic HIV-1 regulatory protein trans-activator of transcription (Tat) continues to be expressed in virally suppressed patients on cART. Using inducible Tat-expressing transgenic mice, we found that dopamine subtype 2 (D2) receptor-expressing medium spiny neurons (MSNs) are selectively vulnerable to Tat exposure compared with D1 receptor-expressing MSNs. This includes Tat-induced reductions in D2 MSN dendritic spine density, increased dendritic damage, and disruptions in neuronal excitability, which coincide with elevated anxiety-like behavior. These data suggest that D2 MSNs and specific circuits within the basal ganglia are preferentially vulnerable to HIV-1.


Assuntos
Comportamento Animal/fisiologia , Corpo Estriado/metabolismo , Locomoção/fisiologia , Receptores de Dopamina D1/metabolismo , Produtos do Gene tat do Vírus da Imunodeficiência Humana/metabolismo , Animais , Espinhas Dendríticas/fisiologia , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , Especificidade de Órgãos , Receptores de Dopamina D2 , Distribuição Tecidual , Produtos do Gene tat do Vírus da Imunodeficiência Humana/genética
11.
Brain Behav Immun ; 69: 124-138, 2018 03.
Artigo em Inglês | MEDLINE | ID: mdl-29146238

RESUMO

The HIV-1 regulatory protein, trans-activator of transcription (Tat), interacts with opioids to potentiate neuroinflammation and neurodegeneration within the CNS. These effects may involve the C-C chemokine receptor type 5 (CCR5); however, the behavioral contribution of CCR5 on Tat/opioid interactions is not known. Using a transgenic murine model that expresses HIV-1 Tat protein in a GFAP-regulated, doxycycline-inducible manner, we assessed morphine tolerance, dependence, and reward. To assess the influence of CCR5 on these effects, mice were pretreated with oral vehicle or the CCR5 antagonist, maraviroc, prior to morphine administration. We found that HIV-1 Tat expression significantly attenuated the antinociceptive potency of acute morphine (2-64 mg/kg, i.p.) in non-tolerant mice. Consistent with this, Tat attenuated withdrawal symptoms among morphine-tolerant mice. Pretreatment with maraviroc blocked the effects of Tat, reinstating morphine potency in non-tolerant mice and restoring withdrawal symptomology in morphine-tolerant mice. Twenty-four hours following morphine administration, HIV-1 Tat significantly potentiated (∼3.5-fold) morphine-conditioned place preference and maraviroc further potentiated these effects (∼5.7-fold). Maraviroc exerted no measurable behavioral effects on its own. Protein array analyses revealed only minor changes to cytokine profiles when morphine was administered acutely or repeatedly; however, 24 h post morphine administration, the expression of several cytokines was greatly increased, including endogenous CCR5 chemokine ligands (CCL3, CCL4, and CCL5), as well as CCL2. Tat further elevated levels of several cytokines and maraviroc pretreatment attenuated these effects. These data demonstrate that CCR5 mediates key aspects of HIV-1 Tat-induced alterations in the antinociceptive potency and rewarding properties of opioids.


Assuntos
Analgésicos Opioides/farmacologia , Tolerância a Medicamentos/fisiologia , Inflamação/metabolismo , Morfina/farmacologia , Receptores CCR5/metabolismo , Produtos do Gene tat do Vírus da Imunodeficiência Humana/metabolismo , Animais , Antagonistas dos Receptores CCR5/farmacologia , Núcleo Caudado/metabolismo , Condicionamento Operante/efeitos dos fármacos , Citocinas/metabolismo , Inflamação/induzido quimicamente , Inflamação/genética , Masculino , Maraviroc/farmacologia , Camundongos , Camundongos Transgênicos , Atividade Motora/efeitos dos fármacos , Recompensa , Produtos do Gene tat do Vírus da Imunodeficiência Humana/genética
12.
Neurobiol Dis ; 92(Pt B): 124-36, 2016 08.
Artigo em Inglês | MEDLINE | ID: mdl-26845176

RESUMO

Co-exposure to opiates and HIV/HIV proteins results in enhanced CNS morphological and behavioral deficits in HIV(+) individuals and in animal models. Opiates with abuse liability, such as heroin and morphine, bind preferentially to and have pharmacological actions through µ-opioid-receptors (MORs). The mechanisms underlying opiate-HIV interactions are not understood. Exposure to the HIV-1 transactivator of transcription (Tat) protein causes neurodegenerative outcomes that parallel many aspects of the human disease. We have also observed that in vivo exposure to Tat results in apparent changes in morphine efficacy, and thus have hypothesized that HIV proteins might alter MOR activation. To test our hypothesis, MOR-mediated G-protein activation was determined in neuroAIDS-relevant forebrain regions of transgenic mice with inducible CNS expression of HIV-1 Tat. G-protein activation was assessed by MOR agonist-stimulated [(35)S]guanosine-5'-O-(3-thio)triphosphate ([(35)S]GTPγS) autoradiography in brain sections, and in concentration-effect curves of MOR agonist-stimulated [(35)S]GTPγS binding in membranes isolated from specific brain regions. Comparative studies were done using the MOR-selective agonist DAMGO ([D-Ala(2), N-MePhe(4), Gly-ol]-enkephalin) and a more clinically relevant agonist, morphine. Tat exposure reduced MOR-mediated G-protein activation in an agonist, time, and regionally dependent manner. Levels of the GPCR regulatory protein ß-arrestin-2, which is involved in MOR desensitization, were found to be elevated in only one affected brain region, the amygdala; amygdalar ß-arrestin-2 also showed a significantly increased association with MOR by co-immunoprecipitation, suggesting decreased availability of MOR. Interestingly, this correlated with changes in anxiety and fear-conditioned extinction, behaviors that have substantial amygdalar input. We propose that HIV-1 Tat alters the intrinsic capacity of MOR to signal in response to agonist binding, possibly via a mechanism involving altered expression and/or function of ß-arrestin-2.


Assuntos
Ansiedade/metabolismo , Medo/fisiologia , Prosencéfalo/metabolismo , Receptores Opioides mu/metabolismo , Produtos do Gene tat do Vírus da Imunodeficiência Humana/metabolismo , Complexo AIDS Demência/metabolismo , Analgésicos Opioides/farmacologia , Animais , Ansiedade/virologia , Condicionamento Psicológico/fisiologia , Ala(2)-MePhe(4)-Gly(5)-Encefalina/farmacologia , Proteínas de Ligação ao GTP/metabolismo , HIV-1 , Masculino , Camundongos , Camundongos Transgênicos , Morfina/farmacologia , Prosencéfalo/efeitos dos fármacos , Receptores Opioides mu/agonistas , beta-Arrestina 2/metabolismo , Produtos do Gene tat do Vírus da Imunodeficiência Humana/genética
13.
J Neurovirol ; 22(6): 747-762, 2016 12.
Artigo em Inglês | MEDLINE | ID: mdl-27178324

RESUMO

Memory deficits are characteristic of HIV-associated neurocognitive disorders (HAND) and co-occur with hippocampal pathology. The HIV-1 transactivator of transcription (Tat), a regulatory protein, plays a significant role in these events, but the cellular mechanisms involved are poorly understood. Within the hippocampus, diverse populations of interneurons form complex networks; even subtle disruptions can drastically alter synaptic output, resulting in behavioral dysfunction. We hypothesized that HIV-1 Tat would impair cognitive behavior and injure specific hippocampal interneuron subtypes. Male transgenic mice that inducibly expressed HIV-1 Tat (or non-expressing controls) were assessed for cognitive behavior or had hippocampal CA1 subregions evaluated via interneuron subpopulation markers. Tat exposure decreased spatial memory in a Barnes maze and mnemonic performance in a novel object recognition test. Tat reduced the percentage of neurons expressing neuronal nitric oxide synthase (nNOS) without neuropeptide Y immunoreactivity in the stratum pyramidale and the stratum radiatum, parvalbumin in the stratum pyramidale, and somatostatin in the stratum oriens, which are consistent with reductions in interneuron-specific interneuron type 3 (IS3), bistratified, and oriens-lacunosum-moleculare interneurons, respectively. The findings reveal that an interconnected ensemble of CA1 nNOS-expressing interneurons, the IS3 cells, as well as subpopulations of parvalbumin- and somatostatin-expressing interneurons are preferentially vulnerable to HIV-1 Tat. Importantly, the susceptible interneurons form a microcircuit thought to be involved in feedback inhibition of CA1 pyramidal cells and gating of CA1 pyramidal cell inputs. The identification of vulnerable CA1 hippocampal interneurons may provide novel insight into the basic mechanisms underlying key functional and neurobehavioral deficits associated with HAND.


Assuntos
Região CA1 Hipocampal/metabolismo , Disfunção Cognitiva/genética , Interneurônios/metabolismo , Óxido Nítrico Sintase Tipo I/genética , Parvalbuminas/genética , Somatostatina/genética , Produtos do Gene tat do Vírus da Imunodeficiência Humana/genética , Animais , Região CA1 Hipocampal/fisiopatologia , Cognição/fisiologia , Disfunção Cognitiva/metabolismo , Disfunção Cognitiva/fisiopatologia , Regulação da Expressão Gênica , Interneurônios/patologia , Masculino , Aprendizagem em Labirinto , Camundongos , Camundongos Transgênicos , Neuropeptídeo Y/genética , Neuropeptídeo Y/metabolismo , Óxido Nítrico Sintase Tipo I/deficiência , Parvalbuminas/deficiência , Transdução de Sinais , Somatostatina/deficiência , Transgenes , Produtos do Gene tat do Vírus da Imunodeficiência Humana/metabolismo
14.
Brain Behav Immun ; 55: 202-214, 2016 07.
Artigo em Inglês | MEDLINE | ID: mdl-26774528

RESUMO

Human immunodeficiency virus (HIV) is associated with motor and mood disorders, likely influenced by reactive microgliosis and subsequent neural damage. We have recapitulated aspects of this pathology in mice that conditionally express the neurotoxic HIV-1 regulatory protein, trans-activator of transcription (Tat). Progestogens may attenuate Tat-related behavioral impairments and reduce neurotoxicity in vitro, perhaps via progesterone's 5α-reductase-dependent metabolism to the neuroprotective steroid, allopregnanolone. To test this, ovariectomized female mice that conditionally expressed (or did not express) central HIV-1 Tat were administered vehicle or progesterone (4mg/kg), with or without pretreatment of a 5α-reductase inhibitor (finasteride, 50mg/kg). Tat induction significantly increased anxiety-like behavior in an open field, elevated plus maze and a marble burying task concomitant with elevated protein oxidation in striatum. Progesterone administration attenuated anxiety-like effects in the open field and elevated plus maze, but not in conjunction with finasteride pretreatment. Progesterone also attenuated Tat-promoted protein oxidation in striatum, independent of finasteride pretreatment. Concurrent experiments in vitro revealed Tat (50nM)-mediated reductions in neuronal cell survival over 60h, as well as increased neuronal and microglial intracellular calcium, as assessed via fura-2 AM fluorescence. Co-treatment with allopregnanolone (100nM) attenuated neuronal death in time-lapse imaging and blocked the Tat-induced exacerbation of intracellular calcium in neurons and microglia. Lastly, neuronal-glial co-cultures were labeled for Iba-1 to reveal that Tat increased microglial numbers in vitro and co-treatment with allopregnanolone attenuated this effect. Together, these data support the notion that 5α-reduced pregnane steroids exert protection over the neurotoxic effects of HIV-1 Tat.


Assuntos
Inibidores de 5-alfa Redutase/farmacologia , Ansiedade/fisiopatologia , Comportamento Animal/efeitos dos fármacos , Colestenona 5 alfa-Redutase/metabolismo , Microglia/metabolismo , Neurônios/metabolismo , Pregnanolona/farmacologia , Progesterona/farmacologia , Produtos do Gene tat do Vírus da Imunodeficiência Humana/metabolismo , Inibidores de 5-alfa Redutase/administração & dosagem , Animais , Ansiedade/induzido quimicamente , Técnicas de Cocultura , Feminino , Finasterida/administração & dosagem , Finasterida/farmacologia , Camundongos , Microglia/efeitos dos fármacos , Neurônios/efeitos dos fármacos , Ovariectomia , Pregnanolona/administração & dosagem , Progesterona/administração & dosagem , Produtos do Gene tat do Vírus da Imunodeficiência Humana/efeitos dos fármacos
15.
Horm Behav ; 65(5): 445-53, 2014 May.
Artigo em Inglês | MEDLINE | ID: mdl-24726788

RESUMO

Increased anxiety is co-morbid with human immunodeficiency virus (HIV) infection. Actions of the neurotoxic HIV-1 regulatory protein, Tat, may contribute to affective dysfunction. We hypothesized that Tat expression would increase anxiety-like behavior of female GT-tg bigenic mice that express HIV-1 Tat protein in the brain in a doxycycline-dependent manner. Furthermore, given reports that HIV-induced anxiety may occur at lower rates among women, and that the neurotoxic effects of Tat are ameliorated by sex steroids in vitro, we hypothesized that 17ß-estradiol and/or progesterone would ameliorate Tat-induced anxiety-like effects. Among naturally-cycling proestrous and diestrous mice, Tat-induction via 7days of doxycycline treatment significantly increased anxiety-like responding in an open field, elevated plus maze and a marble-burying task, compared to treatment with saline. Proestrous mice demonstrated less anxiety-like behavior than diestrous mice in the open field and elevated plus maze, but these effects did not significantly interact with Tat-induction. Among ovariectomized mice, doxycycline-induced Tat protein significantly increased anxiety-like behavior in an elevated plus maze and a marble burying task compared to saline-treated mice, but not an open field (where anxiety-like responding was already maximal). Co-administration of progesterone (4mg/kg), but not 17ß-estradiol (0.09mg/kg), with doxycycline significantly ameliorated anxiety-like responding in the elevated plus maze and marble burying tasks. When administered together, 17ß-estradiol partially antagonized the protective effects of progesterone on Tat-induced anxiety-like behavior. These findings support evidence of steroid-protection over HIV-1 proteins, and extend them by demonstrating the protective capacity of progesterone on Tat-induced anxiety-like behavior of ovariectomized female mice.


Assuntos
Ansiedade/psicologia , Comportamento Animal/efeitos dos fármacos , Sistema Nervoso Central/metabolismo , Ovariectomia , Progesterona/farmacologia , Progestinas/farmacologia , Produtos do Gene tat do Vírus da Imunodeficiência Humana/biossíntese , Animais , Química Encefálica/efeitos dos fármacos , Doxiciclina/farmacologia , Estradiol/farmacologia , Estrogênios/farmacologia , Ciclo Estral/efeitos dos fármacos , Feminino , Masculino , Camundongos , Camundongos Transgênicos , Produtos do Gene tat do Vírus da Imunodeficiência Humana/genética
16.
Adv Sci (Weinh) ; 11(23): e2305484, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38572510

RESUMO

Delivering cargo to the central nervous system (CNS) remains a pharmacological challenge. For infectious diseases such as HIV, the CNS acts as a latent reservoir that is inadequately managed by systemic antiretrovirals (ARTs). ARTs thus cannot eradicate HIV, and given CNS infection, patients experience neurological deficits collectively referred to as "neuroHIV". Herein, the development of bioinspired ionic liquid-coated nanoparticles (IL-NPs) for in situ hitchhiking on red blood cells (RBCs) is reported, which enables 48% brain delivery of intracarotid arterial- infused cargo. Moreover, IL choline trans-2-hexenoate (CA2HA 1:2) demonstrates preferential accumulation in parenchymal microglia over endothelial cells post-delivery. This study further demonstrates successful loading of abacavir (ABC), an ART that is challenging to encapsulate, into IL-NPs, and verifies retention of antiviral efficacy in vitro. IL-NPs are not cytotoxic to primary human peripheral blood mononuclear cells (PBMCs) and the CA2HA 1:2 coating itself confers notable anti-viremic capacity. In addition, in vitro cell culture assays show markedly increased uptake of IL-NPs into neural cells compared to bare PLGA nanoparticles. This work debuts bioinspired ionic liquids as promising nanoparticle coatings to assist CNS biodistribution and has the potential to revolutionize the delivery of cargos (i.e., drugs, viral vectors) through compartmental barriers such as the blood-brain-barrier (BBB).


Assuntos
Encéfalo , Infecções por HIV , Líquidos Iônicos , Nanopartículas , Nanopartículas/química , Nanopartículas/administração & dosagem , Encéfalo/metabolismo , Encéfalo/efeitos dos fármacos , Líquidos Iônicos/química , Animais , Humanos , Infecções por HIV/tratamento farmacológico , Ratos , Sistemas de Liberação de Medicamentos/métodos , Barreira Hematoencefálica/metabolismo , Barreira Hematoencefálica/efeitos dos fármacos , Camundongos , Masculino
17.
Viruses ; 15(2)2023 02 02.
Artigo em Inglês | MEDLINE | ID: mdl-36851638

RESUMO

Despite the benefits of combinatorial antiretroviral therapies (cART), virotoxic HIV proteins are still detectable within the central nervous system. Approximately half of all cART-treated patients contend with neurological impairments. The mechanisms underlying these effects likely involve virotoxic HIV proteins, including glycoprotein 120 (gp120). Glycoprotein-120 is neurotoxic due to its capacity to activate microglia. Corticosterone has been found to attenuate neuronal death caused by gp120-induced microglial cytokine production in vitro. However, the concentration-dependent effects of corticosterone on microglial activation states and the associated behavioral outcomes are unclear. Herein, we conducted parallel in vitro and in vivo studies to assess gp120-mediated effects on microglial activation, motor function, anxiety- and depression-like behavior, and corticosterone's capacity to attenuate these effects. We found that gp120 activated microglia in vitro, and corticosterone attenuated this effect at an optimal concentration of 100 nM. Transgenic mice expressing gp120 demonstrated greater anxiety-like behavior on an elevated plus maze, and a greater duration of gp120 exposure was associated with motor deficits and anxiety-like behavior. Circulating corticosterone was lower in gp120-expressing males and diestrous females. Greater circulating corticosterone was associated with reduced anxiety-like behavior. These findings may demonstrate a capacity for glucocorticoids to attenuate gp120-mediated neuroinflammation and anxiety-like behavior.


Assuntos
Corticosterona , Microglia , Feminino , Masculino , Camundongos , Animais , Ansiedade , Camundongos Transgênicos , Glicoproteínas
18.
Res Sq ; 2023 Feb 14.
Artigo em Inglês | MEDLINE | ID: mdl-36824802

RESUMO

Delivering cargo to the central nervous system (CNS) remains a pharmacological challenge. For infectious diseases such as HIV, the CNS acts as a latent reservoir that is inadequately managed by systemic antiretrovirals (ARTs). ARTs thus cannot eradicate HIV, and given CNS infection, patients experience an array of neurological deficits that are collectively referred to as 'neuroHIV'. Herein we report the development of bioinspired ionic liquid-coated nanoparticles (IL-NPs) for in situ hitchhiking on red blood cells (RBCs), which enabled 48% delivery of intravenously infused cargo to the brain. Moreover, the ionic liquid (IL) choline trans-2-hexenoate (CA2HA 1:2) demonstrated preferential accumulation in parenchymal microglia over endothelial cells post-delivery. We further demonstrate the successful loading of abacavir (ABC), an ART that is challenging to encapsulate, into the IL-coated NPs and verify the retention of antiviral efficacy in vitro. IL-NPs were not cytotoxic to primary human peripheral blood mononuclear cells (PBMCs) and the CA2HA 1:2 coating conferred notable anti-viremic capacity on its own. In addition, in vitro cell culture assays showed markedly increased uptake of IL-coated nanoparticles into neuronal cells compared to bare nanoparticles. This work debuts bioinspired ionic liquids as promising nanoparticle coatings to assist CNS biodistribution and has the potential to revolutionize the delivery of cargos (i.e., drugs, viral vectors) through compartmental barriers such as the blood-brain-barrier (BBB), illustrated in the graphical abstract below.

19.
ACS Chem Neurosci ; 14(5): 958-976, 2023 03 01.
Artigo em Inglês | MEDLINE | ID: mdl-36795782

RESUMO

The kappa opioid receptor (KOR) is involved in the regulation of both the reward and mood processes. Recent reports find that the use of drugs of abuse increases the production of dynorphin and the overall activation of KOR. Long-acting KOR antagonists, such as norbinaltorphimine (nor-BNI), JDTic, and 5'-guanidinonaltrindole (GNTI), have been shown to stop depressive and anxiety-related disorders, which are the common side effects of withdrawal that can lead to a relapse in drug use. Unfortunately, these prototypical KOR antagonists are known to induce selective KOR antagonism that is delayed by hours and extremely prolonged, and their use in humans comes with serious safety concerns because they possess a large window for potential drug-drug interactions. Furthermore, their persistent pharmacodynamic activities can hinder the ability to reverse unanticipated side effects immediately. Herein, we report our studies of the lead selective, salvinorin-based KOR antagonist (1) as well as nor-BNI on C57BL/6N male mice for spontaneous cocaine withdrawal. Assessment of pharmacokinetics showed that 1 is a short-acting compound with an average half-life of 3.75 h across different compartments (brain, spinal cord, liver, and plasma). Both 1 (5 mg/kg) and nor-BNI (5 mg/kg) were shown to reduce spontaneous withdrawal behavior in mice, with 1 producing additional anti-anxiety-like behavior in a light-dark transition test (however, no mood-related effects of 1 or nor-BNI were observed at the current dosing in an elevated plus maze or a tail suspension test). Our results support the study of selective, short-acting KOR antagonists for the treatment of psychostimulant withdrawal and the associated negative mood states that contribute to relapse. Furthermore, we identified pertinent interactions between 1 and KOR via computational studies, including induced-fit docking, mutagenesis, and molecular dynamics simulations, to gain insight into the design of future selective, potent, and short-acting salvinorin-based KOR antagonists.


Assuntos
Cocaína , Síndrome de Abstinência a Substâncias , Humanos , Camundongos , Masculino , Animais , Receptores Opioides kappa , Cocaína/farmacologia , Camundongos Endogâmicos C57BL , Síndrome de Abstinência a Substâncias/tratamento farmacológico , Antagonistas de Entorpecentes/farmacologia , Recidiva
20.
Aging (Albany NY) ; 14(13): 5345-5365, 2022 07 12.
Artigo em Inglês | MEDLINE | ID: mdl-35830469

RESUMO

In the U.S. about half of the HIV-infected individuals are aged 50 and older. In men living with HIV, secondary hypogonadism is common and occurs earlier than in seronegative men, and its prevalence increases with age. While the mechanisms(s) are unknown, the HIV-1 trans-activator of transcription (Tat) protein disrupts neuroendocrine function in mice partly by dysregulating mitochondria and neurosteroidogenesis. We hypothesized that conditional Tat expression in middle-aged male transgenic mice [Tat(+)] would promote age-related comorbidities compared to age-matched controls [Tat(-)]. We expected Tat to alter steroid hormone milieu consistent with behavioral deficits. Middle-aged Tat(+) mice had lower circulating testosterone and progesterone than age-matched controls and greater circulating corticosterone and central allopregnanolone than other groups. Young Tat(+) mice had greater circulating progesterone and estradiol-to-testosterone ratios. Older age or Tat exposure increased anxiety-like behavior (open field; elevated plus-maze), increased cognitive errors (radial arm water maze), and reduced grip strength. Young Tat(+), or middle-aged Tat(-), males had higher mechanical nociceptive thresholds than age-matched counterparts. Steroid levels correlated with behaviors. Thus, Tat may contribute to HIV-accelerated aging.


Assuntos
Infecções por HIV , HIV-1 , Animais , Cognição , Estradiol , Infecções por HIV/complicações , HIV-1/metabolismo , Humanos , Masculino , Camundongos , Camundongos Transgênicos , Morbidade , Progesterona , Testosterona , Produtos do Gene tat do Vírus da Imunodeficiência Humana/genética , Produtos do Gene tat do Vírus da Imunodeficiência Humana/metabolismo
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa