Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 540
Filtrar
1.
Nature ; 614(7946): 88-94, 2023 02.
Artigo em Inglês | MEDLINE | ID: mdl-36653458

RESUMO

Two-dimensional (2D) materials and their heterostructures show a promising path for next-generation electronics1-3. Nevertheless, 2D-based electronics have not been commercialized, owing mainly to three critical challenges: i) precise kinetic control of layer-by-layer 2D material growth, ii) maintaining a single domain during the growth, and iii) wafer-scale controllability of layer numbers and crystallinity. Here we introduce a deterministic, confined-growth technique that can tackle these three issues simultaneously, thus obtaining wafer-scale single-domain 2D monolayer arrays and their heterostructures on arbitrary substrates. We geometrically confine the growth of the first set of nuclei by defining a selective growth area via patterning SiO2 masks on two-inch substrates. Owing to substantial reduction of the growth duration at the micrometre-scale SiO2 trenches, we obtain wafer-scale single-domain monolayer WSe2 arrays on the arbitrary substrates by filling the trenches via short growth of the first set of nuclei, before the second set of nuclei is introduced, thus without requiring epitaxial seeding. Further growth of transition metal dichalcogenides with the same principle yields the formation of single-domain MoS2/WSe2 heterostructures. Our achievement will lay a strong foundation for 2D materials to fit into industrial settings.

2.
Nature ; 614(7946): 81-87, 2023 02.
Artigo em Inglês | MEDLINE | ID: mdl-36725999

RESUMO

Micro-LEDs (µLEDs) have been explored for augmented and virtual reality display applications that require extremely high pixels per inch and luminance1,2. However, conventional manufacturing processes based on the lateral assembly of red, green and blue (RGB) µLEDs have limitations in enhancing pixel density3-6. Recent demonstrations of vertical µLED displays have attempted to address this issue by stacking freestanding RGB LED membranes and fabricating top-down7-14, but minimization of the lateral dimensions of stacked µLEDs has been difficult. Here we report full-colour, vertically stacked µLEDs that achieve, to our knowledge, the highest array density (5,100 pixels per inch) and the smallest size (4 µm) reported to date. This is enabled by a two-dimensional materials-based layer transfer technique15-18 that allows the growth of RGB LEDs of near-submicron thickness on two-dimensional material-coated substrates via remote or van der Waals epitaxy, mechanical release and stacking of LEDs, followed by top-down fabrication. The smallest-ever stack height of around 9 µm is the key enabler for record high µLED array density. We also demonstrate vertical integration of blue µLEDs with silicon membrane transistors for active matrix operation. These results establish routes to creating full-colour µLED displays for augmented and virtual reality, while also offering a generalizable platform for broader classes of three-dimensional integrated devices.

3.
PLoS Biol ; 20(4): e3001627, 2022 04.
Artigo em Inglês | MEDLINE | ID: mdl-35486643

RESUMO

Brain imaging research enjoys increasing adoption of supervised machine learning for single-participant disease classification. Yet, the success of these algorithms likely depends on population diversity, including demographic differences and other factors that may be outside of primary scientific interest. Here, we capitalize on propensity scores as a composite confound index to quantify diversity due to major sources of population variation. We delineate the impact of population heterogeneity on the predictive accuracy and pattern stability in 2 separate clinical cohorts: the Autism Brain Imaging Data Exchange (ABIDE, n = 297) and the Healthy Brain Network (HBN, n = 551). Across various analysis scenarios, our results uncover the extent to which cross-validated prediction performances are interlocked with diversity. The instability of extracted brain patterns attributable to diversity is located preferentially in regions part of the default mode network. Collectively, our findings highlight the limitations of prevailing deconfounding practices in mitigating the full consequences of population diversity.


Assuntos
Encéfalo , Imageamento por Ressonância Magnética , Algoritmos , Encéfalo/diagnóstico por imagem , Humanos , Imageamento por Ressonância Magnética/métodos , Neuroimagem/métodos , Aprendizado de Máquina Supervisionado
4.
Brain ; 147(7): 2483-2495, 2024 Jul 05.
Artigo em Inglês | MEDLINE | ID: mdl-38701342

RESUMO

Network neuroscience offers a unique framework to understand the organizational principles of the human brain. Despite recent progress, our understanding of how the brain is modulated by focal lesions remains incomplete. Resection of the temporal lobe is the most effective treatment to control seizures in pharmaco-resistant temporal lobe epilepsy (TLE), making this syndrome a powerful model to study lesional effects on network organization in young and middle-aged adults. Here, we assessed the downstream consequences of a focal lesion and its surgical resection on the brain's structural connectome, and explored how this reorganization relates to clinical variables at the individual patient level. We included adults with pharmaco-resistant TLE (n = 37) who underwent anterior temporal lobectomy between two imaging time points, as well as age- and sex-matched healthy controls who underwent comparable imaging (n = 31). Core to our analysis was the projection of high-dimensional structural connectome data-derived from diffusion MRI tractography from each subject-into lower-dimensional gradients. We then compared connectome gradients in patients relative to controls before surgery, tracked surgically-induced connectome reconfiguration from pre- to postoperative time points, and examined associations to patient-specific clinical and imaging phenotypes. Before surgery, individuals with TLE presented with marked connectome changes in bilateral temporo-parietal regions, reflecting an increased segregation of the ipsilateral anterior temporal lobe from the rest of the brain. Surgery-induced connectome reorganization was localized to this temporo-parietal subnetwork, but primarily involved postoperative integration of contralateral regions with the rest of the brain. Using a partial least-squares analysis, we uncovered a latent clinical imaging signature underlying this pre- to postoperative connectome reorganization, showing that patients who displayed postoperative integration in bilateral fronto-occipital cortices also had greater preoperative ipsilateral hippocampal atrophy, lower seizure frequency and secondarily generalized seizures. Our results bridge the effects of focal brain lesions and their surgical resections with large-scale network reorganization and interindividual clinical variability, thus offering new avenues to examine the fundamental malleability of the human brain.


Assuntos
Lobectomia Temporal Anterior , Conectoma , Epilepsia do Lobo Temporal , Lobo Temporal , Humanos , Feminino , Masculino , Adulto , Epilepsia do Lobo Temporal/cirurgia , Epilepsia do Lobo Temporal/fisiopatologia , Epilepsia do Lobo Temporal/diagnóstico por imagem , Epilepsia do Lobo Temporal/patologia , Lobo Temporal/patologia , Lobo Temporal/cirurgia , Lobo Temporal/diagnóstico por imagem , Lobectomia Temporal Anterior/métodos , Pessoa de Meia-Idade , Adulto Jovem , Imagem de Tensor de Difusão , Rede Nervosa/diagnóstico por imagem , Rede Nervosa/patologia , Epilepsia Resistente a Medicamentos/cirurgia , Epilepsia Resistente a Medicamentos/diagnóstico por imagem , Epilepsia Resistente a Medicamentos/fisiopatologia , Epilepsia Resistente a Medicamentos/patologia
5.
Proc Natl Acad Sci U S A ; 119(27): e2116673119, 2022 07 05.
Artigo em Inglês | MEDLINE | ID: mdl-35776541

RESUMO

Adolescence is a time of profound changes in the physical wiring and function of the brain. Here, we analyzed structural and functional brain network development in an accelerated longitudinal cohort spanning 14 to 25 y (n = 199). Core to our work was an advanced in vivo model of cortical wiring incorporating MRI features of corticocortical proximity, microstructural similarity, and white matter tractography. Longitudinal analyses assessing age-related changes in cortical wiring identified a continued differentiation of multiple corticocortical structural networks in youth. We then assessed structure-function coupling using resting-state functional MRI measures in the same participants both via cross-sectional analysis at baseline and by studying longitudinal change between baseline and follow-up scans. At baseline, regions with more similar structural wiring were more likely to be functionally coupled. Moreover, correlating longitudinal structural wiring changes with longitudinal functional connectivity reconfigurations, we found that increased structural differentiation, particularly between sensory/unimodal and default mode networks, was reflected by reduced functional interactions. These findings provide insights into adolescent development of human brain structure and function, illustrating how structural wiring interacts with the maturation of macroscale functional hierarchies.


Assuntos
Desenvolvimento do Adolescente , Encéfalo , Conectoma , Adolescente , Encéfalo/fisiologia , Encéfalo/ultraestrutura , Estudos Transversais , Humanos , Imageamento por Ressonância Magnética , Rede Nervosa/fisiologia , Rede Nervosa/ultraestrutura
6.
Nano Lett ; 24(10): 2939-2952, 2024 Mar 13.
Artigo em Inglês | MEDLINE | ID: mdl-38477054

RESUMO

Advanced heterogeneous integration technologies are pivotal for next-generation electronics. Single-crystalline materials are one of the key building blocks for heterogeneous integration, although it is challenging to produce and integrate these materials. Remote epitaxy is recently introduced as a solution for growing single-crystalline thin films that can be exfoliated from host wafers and then transferred onto foreign platforms. This technology has quickly gained attention, as it can be applied to a wide variety of materials and can realize new functionalities and novel application platforms. Nevertheless, remote epitaxy is a delicate process, and thus, successful execution of remote epitaxy is often challenging. Here, we elucidate the mechanisms of remote epitaxy, summarize recent breakthroughs, and discuss the challenges and solutions in the remote epitaxy of various material systems. We also provide a vision for the future of remote epitaxy for studying fundamental materials science, as well as for functional applications.

7.
Neuroimage ; 291: 120590, 2024 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-38548036

RESUMO

Body mass index (BMI) is an indicator of obesity, and recent neuroimaging studies have demonstrated that inter-individual variations in BMI are associated with altered brain structure and function. However, the mechanism underlying the alteration of structure-function correspondence according to BMI is under-investigated. In this study, we studied structural and functional connectivity derived from diffusion MRI tractography and inter-regional correlations of functional MRI time series, respectively. We combined the structural and functional connectivity information using the Riemannian optimization approach. First, the low-dimensional principal eigenvectors (i.e., gradients) of the structural connectivity were generated by applying diffusion map embedding with varying diffusion times. A transformation was identified so that the structural and functional embeddings share the same coordinate system, and subsequently, the functional connectivity matrix was simulated. Then, we generated gradients from the simulated functional connectivity matrix. We found the most apparent cortical hierarchical organization differentiating between low-level sensory and higher-order transmodal regions in the middle of the diffusion time, indicating that the hierarchical organization of the brain may reflect the intermediate mechanisms of mono- and polysynaptic communications. Associations between the functional gradients and BMI were strongest when the hierarchical structure was the most evident. Moreover, the gradient-BMI association map was related to the microstructural features, and the findings indicated that the BMI-related structure-function coupling was significantly associated with brain microstructure, particularly in higher-order transmodal areas. Finally, transcriptomic association analysis revealed the potential biological underpinnings specifying gene enrichment in the striatum, hypothalamus, and cortical cells. Our findings provide evidence that structure-function correspondence is strongly coupled with BMI when hierarchical organization is the most apparent and that the associations are related to the multiscale properties of the brain, leading to an advanced understanding of the neural mechanisms related to BMI.


Assuntos
Encéfalo , Imagem de Tensor de Difusão , Humanos , Índice de Massa Corporal , Encéfalo/diagnóstico por imagem , Imagem de Tensor de Difusão/métodos , Imageamento por Ressonância Magnética/métodos , Imagem de Difusão por Ressonância Magnética , Mapeamento Encefálico
8.
Neuroimage ; 288: 120534, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38340881

RESUMO

Autism spectrum disorder is a common neurodevelopmental condition that manifests as a disruption in sensory and social skills. Although it has been shown that the brain morphology of individuals with autism is asymmetric, how this differentially affects the structural connectome organization of each hemisphere remains under-investigated. We studied whole-brain structural connectivity-based brain asymmetry in individuals with autism using diffusion magnetic resonance imaging obtained from the Autism Brain Imaging Data Exchange initiative. By leveraging dimensionality reduction techniques, we constructed low-dimensional representations of structural connectivity and calculated their asymmetry index. Comparing the asymmetry index between individuals with autism and neurotypical controls, we found atypical structural connectome asymmetry in the sensory and default-mode regions, particularly showing weaker asymmetry towards the right hemisphere in autism. Network communication provided topological underpinnings by demonstrating that the inferior temporal cortex and limbic and frontoparietal regions showed reduced global network communication efficiency and decreased send-receive network navigation in the inferior temporal and lateral visual cortices in individuals with autism. Finally, supervised machine learning revealed that structural connectome asymmetry could be used as a measure for predicting communication-related autistic symptoms and nonverbal intelligence. Our findings provide insights into macroscale structural connectome alterations in autism and their topological underpinnings.


Assuntos
Transtorno do Espectro Autista , Transtorno Autístico , Conectoma , Humanos , Transtorno Autístico/diagnóstico por imagem , Transtorno do Espectro Autista/diagnóstico por imagem , Transtorno do Espectro Autista/patologia , Imageamento por Ressonância Magnética/métodos , Encéfalo/diagnóstico por imagem , Encéfalo/patologia
9.
Neuroimage ; 285: 120481, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-38043839

RESUMO

Autism spectrum disorder (ASD) is one of the most common neurodevelopmental diagnoses. Although incompletely understood, structural and functional network alterations are increasingly recognized to be at the core of the condition. We utilized multimodal imaging and connectivity modeling to study structure-function coupling in ASD and probed mono- and polysynaptic mechanisms on structurally-governed network function. We examined multimodal magnetic resonance imaging data in 80 ASD and 61 neurotypical controls from the Autism Brain Imaging Data Exchange (ABIDE) II initiative. We predicted intrinsic functional connectivity from structural connectivity data in each participant using a Riemannian optimization procedure that varies the times that simulated signals can unfold along tractography-derived personalized connectomes. In both ASD and neurotypical controls, we observed improved structure-function prediction at longer diffusion time scales, indicating better modeling of brain function when polysynaptic mechanisms are accounted for. Prediction accuracy differences (∆prediction accuracy) were marked in transmodal association systems, such as the default mode network, in both neurotypical controls and ASD. Differences were, however, lower in ASD in a polysynaptic regime at higher simulated diffusion times. We compared regional differences in ∆prediction accuracy between both groups to assess the impact of polysynaptic communication on structure-function coupling. This analysis revealed that between-group differences in ∆prediction accuracy followed a sensory-to-transmodal cortical hierarchy, with an increased gap between controls and ASD in transmodal compared to sensory/motor systems. Multivariate associative techniques revealed that structure-function differences reflected inter-individual differences in autistic symptoms and verbal as well as non-verbal intelligence. Our network modeling approach sheds light on atypical structure-function coupling in autism, and suggests that polysynaptic network mechanisms are implicated in the condition and that these can help explain its wide range of associated symptoms.


Assuntos
Transtorno do Espectro Autista , Transtorno Autístico , Conectoma , Humanos , Transtorno Autístico/diagnóstico por imagem , Conectoma/métodos , Encéfalo , Imageamento por Ressonância Magnética/métodos , Mapeamento Encefálico/métodos
10.
Neuroimage ; 291: 120595, 2024 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-38554782

RESUMO

Multimodal magnetic resonance imaging (MRI) provides complementary information for investigating brain structure and function; for example, an in vivo microstructure-sensitive proxy can be estimated using the ratio between T1- and T2-weighted structural MRI. However, acquiring multiple imaging modalities is challenging in patients with inattentive disorders. In this study, we proposed a comprehensive framework to provide multiple imaging features related to the brain microstructure using only T1-weighted MRI. Our toolbox consists of (i) synthesizing T2-weighted MRI from T1-weighted MRI using a conditional generative adversarial network; (ii) estimating microstructural features, including intracortical covariance and moment features of cortical layer-wise microstructural profiles; and (iii) generating a microstructural gradient, which is a low-dimensional representation of the intracortical microstructure profile. We trained and tested our toolbox using T1- and T2-weighted MRI scans of 1,104 healthy young adults obtained from the Human Connectome Project database. We found that the synthesized T2-weighted MRI was very similar to the actual image and that the synthesized data successfully reproduced the microstructural features. The toolbox was validated using an independent dataset containing healthy controls and patients with episodic migraine as well as the atypical developmental condition of autism spectrum disorder. Our toolbox may provide a new paradigm for analyzing multimodal structural MRI in the neuroscience community and is openly accessible at https://github.com/CAMIN-neuro/GAN-MAT.


Assuntos
Transtorno do Espectro Autista , Conectoma , Humanos , Transtorno do Espectro Autista/diagnóstico por imagem , Transtorno do Espectro Autista/patologia , Imageamento por Ressonância Magnética/métodos , Encéfalo/diagnóstico por imagem , Encéfalo/patologia , Imagem Multimodal , Processamento de Imagem Assistida por Computador/métodos
11.
Hum Brain Mapp ; 45(1): e26581, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-38224537

RESUMO

Eating behavior is highly heterogeneous across individuals and cannot be fully explained using only the degree of obesity. We utilized unsupervised machine learning and functional connectivity measures to explore the heterogeneity of eating behaviors measured by a self-assessment instrument using 424 healthy adults (mean ± standard deviation [SD] age = 47.07 ± 18.89 years; 67% female). We generated low-dimensional representations of functional connectivity using resting-state functional magnetic resonance imaging and estimated latent features using the feature representation capabilities of an autoencoder by nonlinearly compressing the functional connectivity information. The clustering approaches applied to latent features identified three distinct subgroups. The subgroups exhibited different levels of hunger traits, while their body mass indices were comparable. The results were replicated in an independent dataset consisting of 212 participants (mean ± SD age = 38.97 ± 19.80 years; 35% female). The model interpretation technique of integrated gradients revealed that the between-group differences in the integrated gradient maps were associated with functional reorganization in heteromodal association and limbic cortices and reward-related subcortical structures such as the accumbens, amygdala, and caudate. The cognitive decoding analysis revealed that these systems are associated with reward- and emotion-related systems. Our findings provide insights into the macroscopic brain organization of eating behavior-related subgroups independent of obesity.


Assuntos
Imageamento por Ressonância Magnética , Obesidade , Adulto , Humanos , Feminino , Pessoa de Meia-Idade , Idoso , Adulto Jovem , Masculino , Imageamento por Ressonância Magnética/métodos , Encéfalo/diagnóstico por imagem , Mapeamento Encefálico/métodos , Comportamento Alimentar
12.
Nat Mater ; 22(12): 1470-1477, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-38012388

RESUMO

Three-dimensional (3D) hetero-integration technology is poised to revolutionize the field of electronics by stacking functional layers vertically, thereby creating novel 3D circuity architectures with high integration density and unparalleled multifunctionality. However, the conventional 3D integration technique involves complex wafer processing and intricate interlayer wiring. Here we demonstrate monolithic 3D integration of two-dimensional, material-based artificial intelligence (AI)-processing hardware with ultimate integrability and multifunctionality. A total of six layers of transistor and memristor arrays were vertically integrated into a 3D nanosystem to perform AI tasks, by peeling and stacking of AI processing layers made from bottom-up synthesized two-dimensional materials. This fully monolithic-3D-integrated AI system substantially reduces processing time, voltage drops, latency and footprint due to its densely packed AI processing layers with dense interlayer connectivity. The successful demonstration of this monolithic-3D-integrated AI system will not only provide a material-level solution for hetero-integration of electronics, but also pave the way for unprecedented multifunctional computing hardware with ultimate parallelism.

13.
PLoS Pathog ; 18(8): e1010755, 2022 08.
Artigo em Inglês | MEDLINE | ID: mdl-36006890

RESUMO

Annual influenza vaccination is recommended to update the variable hemagglutinin antigens. Here, we first designed a virus-like particle (VLP) displaying consensus multi-neuraminidase (NA) subtypes (cN1, cN2, B cNA) and M2 ectodomain (M2e) tandem repeat (m-cNA-M2e VLP). Vaccination of mice with m-cNA-M2e VLP induced broad NA inhibition (NAI), and M2e antibodies as well as interferon-gamma secreting T cell responses. Mice vaccinated with m-cNA-M2e VLP were protected against influenza A (H1N1, H5N1, H3N2, H9N2, H7N9) and influenza B (Yamagata and Victoria lineage) viruses containing substantial antigenic variations. Protective immune contributors include cellular and humoral immunity as well as antibody-dependent cellular cytotoxicity. Furthermore, comparable cross protection by m-cNA-M2e VLP vaccination was induced in aged mice. This study supports a novel strategy of developing a universal vaccine against influenza A and B viruses potentially in both young and aged populations by inducing multi-NA subtype and M2e immunity with a single VLP entity.


Assuntos
Vacinas contra Influenza , Influenza Humana , Infecções por Orthomyxoviridae , Animais , Anticorpos Antivirais , Humanos , Vírus da Influenza A/classificação , Vacinas contra Influenza/imunologia , Influenza Humana/prevenção & controle , Camundongos , Camundongos Endogâmicos BALB C , Infecções por Orthomyxoviridae/prevenção & controle , Proteínas da Matriz Viral/genética
14.
Behav Brain Funct ; 20(1): 2, 2024 Jan 24.
Artigo em Inglês | MEDLINE | ID: mdl-38267953

RESUMO

Autism spectrum disorder is one of the most common neurodevelopmental conditions associated with sensory and social communication impairments. Previous neuroimaging studies reported that atypical nodal- or network-level functional brain organization in individuals with autism was associated with autistic behaviors. Although dimensionality reduction techniques have the potential to uncover new biomarkers, the analysis of whole-brain structural connectome abnormalities in a low-dimensional latent space is underinvestigated. In this study, we utilized autoencoder-based feature representation learning for diffusion magnetic resonance imaging-based structural connectivity in 80 individuals with autism and 61 neurotypical controls that passed strict quality controls. We generated low-dimensional latent features using the autoencoder model for each group and adopted an integrated gradient approach to assess the contribution of the input data for predicting latent features during the encoding process. Subsequently, we compared the integrated gradient values between individuals with autism and neurotypical controls and observed differences within the transmodal regions and between the sensory and limbic systems. Finally, we identified significant associations between integrated gradient values and communication abilities in individuals with autism. Our findings provide insights into the whole-brain structural connectome in autism and may help identify potential biomarkers for autistic connectopathy.


Assuntos
Transtorno do Espectro Autista , Transtorno Autístico , Conectoma , Humanos , Transtorno Autístico/diagnóstico por imagem , Transtorno do Espectro Autista/diagnóstico por imagem , Aprendizagem , Biomarcadores
15.
Inorg Chem ; 63(1): 537-547, 2024 Jan 08.
Artigo em Inglês | MEDLINE | ID: mdl-38108625

RESUMO

In this article, we discuss the synthesis of eight novel zirconium and hafnium complexes containing amidoxime ligands as potential precursors for atomic layer deposition (ALD). Two amidoximes, viz., (E)-N'-hydroxy-N,N-dimethylacetimidamide (mdaoH) and (Z)-N'-hydroxy-N,N-dimethylpivalimidamide (tdaoH), along with their Zr and Hf homoleptic complexes, Zr(mdao)4 (1), Hf(mdao)4 (2), Zr(tdao)4 (3), and Hf(tdao)4 (4) were prepared. We further synthesized heteroleptic compounds with different physical properties by introducing cyclopentadienyl (Cp) ligand, namely, CpZr(mdao)3 (5), CpHf(mdao)3 (6), CpZr(tdao)3 (7), and CpHf(tdao)3 (8). Thermogravimetric analysis was used for the assessment of the evaporation characteristics of complexes 1, 2, 5, and 6, and it revealed multistep weight losses with high residues. On the other hand, the thermogravimetric analysis curves of complexes 3, 4, 7, and 8 comprising tdao ligands revealed single-step weight losses with moderate residues. Single-crystal X-ray diffraction studies of complexes 1, 3, and 7 showed that all of the complexes have monomeric molecular structures. Complex 7 exhibited a low melting point (75 °C), good volatility, and high thermal stability compared with other complexes. Therefore, an atomic layer deposition process for the growth of ZrO2 was developed by using ZrCp(tdao)3 (7) as a novel precursor.

16.
Brain ; 146(9): 3923-3937, 2023 09 01.
Artigo em Inglês | MEDLINE | ID: mdl-37082950

RESUMO

Temporal lobe epilepsy (TLE), one of the most common pharmaco-resistant epilepsies, is associated with pathology of paralimbic brain regions, particularly in the mesiotemporal lobe. Cognitive dysfunction in TLE is frequent, and particularly affects episodic memory. Crucially, these difficulties challenge the quality of life of patients, sometimes more than seizures, underscoring the need to assess neural processes of cognitive dysfunction in TLE to improve patient management. Our work harnessed a novel conceptual and analytical approach to assess spatial gradients of microstructural differentiation between cortical areas based on high-resolution MRI analysis. Gradients track region-to-region variations in intracortical lamination and myeloarchitecture, serving as a system-level measure of structural and functional reorganization. Comparing cortex-wide microstructural gradients between 21 patients and 35 healthy controls, we observed a reorganization of this gradient in TLE driven by reduced microstructural differentiation between paralimbic cortices and the remaining cortex with marked abnormalities in ipsilateral temporopolar and dorsolateral prefrontal regions. Findings were replicated in an independent cohort. Using an independent post-mortem dataset, we observed that in vivo findings reflected topographical variations in cortical cytoarchitecture. We indeed found that macroscale changes in microstructural differentiation in TLE reflected increased similarity of paralimbic and primary sensory/motor regions. Disease-related transcriptomics could furthermore show specificity of our findings to TLE over other common epilepsy syndromes. Finally, microstructural dedifferentiation was associated with cognitive network reorganization seen during an episodic memory functional MRI paradigm and correlated with interindividual differences in task accuracy. Collectively, our findings showing a pattern of reduced microarchitectural differentiation between paralimbic regions and the remaining cortex provide a structurally-grounded explanation for large-scale functional network reorganization and cognitive dysfunction characteristic of TLE.


Assuntos
Epilepsia do Lobo Temporal , Humanos , Epilepsia do Lobo Temporal/patologia , Qualidade de Vida , Encéfalo/patologia , Imageamento por Ressonância Magnética , Mapeamento Encefálico
17.
Cereb Cortex ; 33(5): 1566-1580, 2023 02 20.
Artigo em Inglês | MEDLINE | ID: mdl-35552620

RESUMO

BACKGROUND: Autism spectrum disorder (ASD) is a common neurodevelopmental diagnosis showing substantial phenotypic heterogeneity. A leading example can be found in verbal and nonverbal cognitive skills, which vary from elevated to impaired compared with neurotypical individuals. Moreover, deficits in verbal profiles often coexist with normal or superior performance in the nonverbal domain. METHODS: To study brain substrates underlying cognitive imbalance in ASD, we capitalized categorical and dimensional IQ profiling as well as multimodal neuroimaging. RESULTS: IQ analyses revealed a marked verbal to nonverbal IQ imbalance in ASD across 2 datasets (Dataset-1: 155 ASD, 151 controls; Dataset-2: 270 ASD, 490 controls). Neuroimaging analysis in Dataset-1 revealed a structure-function substrate of cognitive imbalance, characterized by atypical cortical thickening and altered functional integration of language networks alongside sensory and higher cognitive areas. CONCLUSION: Although verbal and nonverbal intelligence have been considered as specifiers unrelated to autism diagnosis, our results indicate that intelligence disparities are accentuated in ASD and reflected by a consistent structure-function substrate affecting multiple brain networks. Our findings motivate the incorporation of cognitive imbalances in future autism research, which may help to parse the phenotypic heterogeneity and inform intervention-oriented subtyping in ASD.


Assuntos
Transtorno do Espectro Autista , Transtorno Autístico , Humanos , Transtorno Autístico/complicações , Encéfalo , Inteligência , Cognição
18.
Cereb Cortex ; 33(5): 1782-1798, 2023 02 20.
Artigo em Inglês | MEDLINE | ID: mdl-35596951

RESUMO

BACKGROUND: Higher-order cognition is hypothesized to be implemented via distributed cortical networks that are linked via long-range connections. However, it is unknown how computational advantages of long-range connections reflect cortical microstructure and microcircuitry. METHODS: We investigated this question by (i) profiling long-range cortical connectivity using resting-state functional magnetic resonance imaging (MRI) and cortico-cortical geodesic distance mapping, (ii) assessing how long-range connections reflect local brain microarchitecture, and (iii) examining the microarchitectural similarity of regions connected through long-range connections. RESULTS: Analysis of 2 independent datasets indicated that sensory/motor areas had more clustered short-range connections, while transmodal association systems hosted distributed, long-range connections. Meta-analytical decoding suggested that this topographical difference mirrored shifts in cognitive function, from perception/action towards emotional/social processing. Analysis of myelin-sensitive in vivo MRI as well as postmortem histology and transcriptomics datasets established that gradients in functional connectivity distance are paralleled by those present in cortical microarchitecture. Notably, long-range connections were found to link spatially remote regions of association cortex with an unexpectedly similar microarchitecture. CONCLUSIONS: By mapping covarying topographies of long-range functional connections and cortical microcircuits, the current work provides insights into structure-function relations in human neocortex.


Assuntos
Conectoma , Neocórtex , Humanos , Imageamento por Ressonância Magnética/métodos , Mapeamento Encefálico/métodos , Cognição , Emoções , Vias Neurais , Conectoma/métodos
19.
J Chem Phys ; 160(2)2024 Jan 14.
Artigo em Inglês | MEDLINE | ID: mdl-38189606

RESUMO

Alkoxide precursors have been highlighted for depositing carbon-free films, but their use in Atomic Layer Deposition (ALD) often exhibits a non-saturated growth. This indicates no self-limiting growth due to the chain reaction of hydrolysis or ligand decomposition caused by ß-hydride elimination. In the previous study, we demonstrated that self-limiting growth of ALD can be achieved using our newly developed precursor, hafnium cyclopentadienyl tris(N-ethoxy-2,2-dimethyl propanamido) [HfCp(edpa)3]. To elucidate the growth mechanism and the role of cyclopentadienyl (Cp) ligand in a heteroleptic alkoxide precursor, herein, we compare homoleptic and heteroleptic Hf precursors consisting of N-ethoxy-2,2-dimethyl propanamido (edpa) ligands with and without cyclopentadienyl ligand-hafnium tetrakis(N-ethoxy-2,2-dimethyl propanamido) [Hf(edpa)4] and HfCp(edpa)3. We also investigate the role of a Cp ligand in growth characteristics. By substituting an alkoxide ligand with a Cp ligand, we could modify the surface reaction during ALD, preventing undesired reactions. The last remaining edpa after Hf(edpa)4 adsorption can undergo a hydride elimination reaction, resulting in surface O-H generation. In contrast, Cp remains after the HfCp(edpa)3 adsorption. Accordingly, we observe proper ALD growth with self-limiting properties. Thus, a comparative study of different ligands of the precursors can provide critical clues to the design of alkoxide precursors for obtaining typical ALD growth with a saturation behavior.

20.
Microsurgery ; 44(1): e31084, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-37430144

RESUMO

BACKGROUND: Reverse-flow flaps rely on retrograde or reverse flow for drainage and have shown success in reconstructive surgery. However, limited studies have been conducted on the use of reverse-flow recipient veins. Our study proposed bidirectional venous anastomoses within a single recipient vein to optimize venous outflow and evaluated the outcomes of an additional retrograde venous anastomosis group in traumatic extremity reconstruction. METHODS: We performed a retrospective analysis of 188 patients with traumatic extremity free flap using two venous anastomoses, which were divided into the antegrade and bidirectional venous anastomosis groups. We analyzed the basic demographic information, flap type, duration between injury and reconstruction, recipient vessels, postoperative flap outcomes, and complications. Propensity score matching was used for the additional analysis. RESULTS: Of the 188 patients analyzed, 63 free flaps (126 anastomoses, 33.5%) and 125 free flaps (250 anastomoses, 66.5%) were included in the bidirectional venous anastomosis and antegrade groups, respectively. In the bidirectional vein group, the median time between trauma and reconstruction was 13.0 ± 1.8 days and the mean flap area was 50.29 ± 7.38 cm2 . Radial artery superficial palmar branch perforator flap was most frequently performed (60.3%). In the antegrade vein group, the median time until surgery was 23.0 ± 2.1 days and the mean flap area was 85.0 ± 8.5 cm2 . Thoracodorsal artery perforator flap surgery was the most frequently performed surgery. The two groups were similar in terms of basic characteristics, but the bidirectional group demonstrated significantly higher success rate (98.4% vs. 89.7%, p = .004) and lower complication rate (6.3% vs. 22.4%, p = .007) than the antegrade group. However, these results were not observed after propensity score matching. CONCLUSIONS: Our study demonstrated successful results with the recipient vein using reverse flow. Additional retrograde venous anastomosis is a useful option for augmenting venous drainage for reconstruction of distal extremities in cases where dissection of additional antegrade vein is not feasible.


Assuntos
Retalhos de Tecido Biológico , Procedimentos de Cirurgia Plástica , Humanos , Estudos Retrospectivos , Veias/cirurgia , Retalhos de Tecido Biológico/irrigação sanguínea , Extremidades/cirurgia , Anastomose Cirúrgica/métodos
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa