Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 123
Filtrar
1.
Proc Natl Acad Sci U S A ; 119(35): e2205767119, 2022 08 30.
Artigo em Inglês | MEDLINE | ID: mdl-35998217

RESUMO

Emotions are a central driving force of activism; they motivate participation in movements and encourage sustained involvement. We use natural language processing techniques to analyze emotions expressed or solicited in tweets about 2020 Black Lives Matter protests. Traditional off-the-shelf emotion analysis tools often fail to generalize to new datasets and are unable to adapt to how social movements can raise new ideas and perspectives in short time spans. Instead, we use a few-shot domain adaptation approach for measuring emotions perceived in this specific domain: tweets about protests in May 2020 following the death of George Floyd. While our analysis identifies high levels of expressed anger and disgust across overall posts, it additionally reveals the prominence of positive emotions (encompassing, e.g., pride, hope, and optimism), which are more prevalent in tweets with explicit pro-BlackLivesMatter hashtags and correlated with on the ground protests. The prevalence of positivity contradicts stereotypical portrayals of protesters as primarily perpetuating anger and outrage. Our work offers data, analyses, and methods to support investigations of online activism and the role of emotions in social movements.


Assuntos
População Negra , Emoções , Violação de Direitos Humanos , Mídias Sociais , Racismo Sistêmico , Violação de Direitos Humanos/psicologia , Humanos , Processamento de Linguagem Natural , Racismo Sistêmico/psicologia
2.
Proc Natl Acad Sci U S A ; 119(17): e2121816119, 2022 04 26.
Artigo em Inglês | MEDLINE | ID: mdl-35439057

RESUMO

The ability of a cell to regulate its mechanical properties is central to its function. Emerging evidence suggests that interactions between the cell nucleus and cytoskeleton influence cell mechanics through poorly understood mechanisms. Here we conduct quantitative confocal imaging to show that the loss of A-type lamins tends to increase nuclear and cellular volume while the loss of B-type lamins behaves in the opposite manner. We use fluorescence recovery after photobleaching, atomic force microscopy, optical tweezer microrheology, and traction force microscopy to demonstrate that A-type lamins engage with both F-actin and vimentin intermediate filaments (VIFs) through the linker of nucleoskeleton and cytoskeleton (LINC) complexes to modulate cortical and cytoplasmic stiffness as well as cellular contractility in mouse embryonic fibroblasts (MEFs). In contrast, we show that B-type lamins predominantly interact with VIFs through LINC complexes to regulate cytoplasmic stiffness and contractility. We then propose a physical model mediated by the lamin­LINC complex that explains these distinct mechanical phenotypes (mechanophenotypes). To verify this model, we use dominant negative constructs and RNA interference to disrupt the LINC complexes that facilitate the interaction of the nucleus with the F-actin and VIF cytoskeletons and show that the loss of these elements results in mechanophenotypes like those observed in MEFs that lack A- or B-type lamin isoforms. Finally, we demonstrate that the loss of each lamin isoform softens the cell nucleus and enhances constricted cell migration but in turn increases migration-induced DNA damage. Together, our findings uncover distinctive roles for each of the four major lamin isoforms in maintaining nucleocytoskeletal interactions and cellular mechanics.


Assuntos
Fibroblastos , Lâmina Nuclear , Animais , Núcleo Celular/metabolismo , Citoesqueleto/metabolismo , Fibroblastos/metabolismo , Lamina Tipo A/genética , Lamina Tipo A/metabolismo , Lamina Tipo B/genética , Lamina Tipo B/metabolismo , Camundongos , Lâmina Nuclear/metabolismo , Matriz Nuclear/metabolismo , Isoformas de Proteínas/genética , Isoformas de Proteínas/metabolismo
3.
Gastroenterology ; 164(7): 1137-1151.e15, 2023 06.
Artigo em Inglês | MEDLINE | ID: mdl-36871599

RESUMO

BACKGROUND & AIMS: Fibrosis and tissue stiffening are hallmarks of inflammatory bowel disease (IBD). We have hypothesized that the increased stiffness directly contributes to the dysregulation of the epithelial cell homeostasis in IBD. Here, we aim to determine the impact of tissue stiffening on the fate and function of the intestinal stem cells (ISCs). METHODS: We developed a long-term culture system consisting of 2.5-dimensional intestinal organoids grown on a hydrogel matrix with tunable stiffness. Single-cell RNA sequencing provided stiffness-regulated transcriptional signatures of the ISCs and their differentiated progeny. YAP-knockout and YAP-overexpression mice were used to manipulate YAP expression. In addition, we analyzed colon samples from murine colitis models and human IBD samples to assess the impact of stiffness on ISCs in vivo. RESULTS: We demonstrated that increasing the stiffness potently reduced the population of LGR5+ ISCs and KI-67+-proliferating cells. Conversely, cells expressing the stem cell marker, olfactomedin-4, became dominant in the crypt-like compartments and pervaded the villus-like regions. Concomitantly, stiffening prompted the ISCs to preferentially differentiate toward goblet cells. Mechanistically, stiffening increased the expression of cytosolic YAP, driving the extension of olfactomedin-4+ cells into the villus-like regions, while it induced the nuclear translocation of YAP, leading to preferential differentiation of ISCs toward goblet cells. Furthermore, analysis of colon samples from murine colitis models and patients with IBD demonstrated cellular and molecular remodeling reminiscent of those observed in vitro. CONCLUSIONS: Collectively, our findings highlight that matrix stiffness potently regulates the stemness of ISCs and their differentiation trajectory, supporting the hypothesis that fibrosis-induced gut stiffening plays a direct role in epithelial remodeling in IBD.


Assuntos
Colite , Doenças Inflamatórias Intestinais , Humanos , Camundongos , Animais , Células Caliciformes , Células-Tronco/fisiologia , Mucosa Intestinal/metabolismo , Diferenciação Celular/genética , Doenças Inflamatórias Intestinais/metabolismo , Colite/metabolismo
4.
Cell ; 136(5): 876-90, 2009 Mar 06.
Artigo em Inglês | MEDLINE | ID: mdl-19249086

RESUMO

Store-operated Ca(2+) channels activated by the depletion of Ca(2+) from the endoplasmic reticulum (ER) are a major Ca(2+) entry pathway in nonexcitable cells and are essential for T cell activation and adaptive immunity. After store depletion, the ER Ca(2+) sensor STIM1 and the CRAC channel protein Orai1 redistribute to ER-plasma membrane (PM) junctions, but the fundamental issue of how STIM1 activates the CRAC channel at these sites is unresolved. Here, we identify a minimal, highly conserved 107-aa CRAC activation domain (CAD) of STIM1 that binds directly to the N and C termini of Orai1 to open the CRAC channel. Purified CAD forms a tetramer that clusters CRAC channels, but analysis of STIM1 mutants reveals that channel clustering is not sufficient for channel activation. These studies establish a molecular mechanism for store-operated Ca(2+) entry in which the direct binding of STIM1 to Orai1 drives the accumulation and the activation of CRAC channels at ER-PM junctions.


Assuntos
Canais de Cálcio/metabolismo , Sinalização do Cálcio , Proteínas de Membrana/metabolismo , Proteínas de Neoplasias/metabolismo , Canais de Cálcio/química , Linhagem Celular , Membrana Celular/metabolismo , Retículo Endoplasmático/metabolismo , Humanos , Proteína ORAI1 , Estrutura Terciária de Proteína , Molécula 1 de Interação Estromal
5.
Cell ; 139(2): 380-92, 2009 Oct 16.
Artigo em Inglês | MEDLINE | ID: mdl-19818485

RESUMO

Synapses are asymmetric cellular adhesions that are critical for nervous system development and function, but the mechanisms that induce their formation are not well understood. We have previously identified thrombospondin as an astrocyte-secreted protein that promotes central nervous system (CNS) synaptogenesis. Here, we identify the neuronal thrombospondin receptor involved in CNS synapse formation as alpha2delta-1, the receptor for the anti-epileptic and analgesic drug gabapentin. We show that the VWF-A domain of alpha2delta-1 interacts with the epidermal growth factor-like repeats common to all thrombospondins. alpha2delta-1 overexpression increases synaptogenesis in vitro and in vivo and is required postsynaptically for thrombospondin- and astrocyte-induced synapse formation in vitro. Gabapentin antagonizes thrombospondin binding to alpha2delta-1 and powerfully inhibits excitatory synapse formation in vitro and in vivo. These findings identify alpha2delta-1 as a receptor involved in excitatory synapse formation and suggest that gabapentin may function therapeutically by blocking new synapse formation.


Assuntos
Antígenos CD36/metabolismo , Canais de Cálcio/metabolismo , Neurogênese , Sinapses , Aminas/farmacologia , Animais , Canais de Cálcio Tipo L , Ácidos Cicloexanocarboxílicos/farmacologia , Gabapentina , Camundongos , Plasticidade Neuronal , Neurônios/metabolismo , Ratos , Ratos Sprague-Dawley , Sinapses/efeitos dos fármacos , Ácido gama-Aminobutírico/farmacologia
6.
Kidney Int ; 104(1): 163-180, 2023 07.
Artigo em Inglês | MEDLINE | ID: mdl-37088425

RESUMO

Systemic lupus erythematosus (SLE) is an autoimmune disorder characterized by autoreactive B cells and dysregulation of many other types of immune cells including myeloid cells. Lupus nephritis (LN) is a common target organ manifestations of SLE. Tonicity-responsive enhancer-binding protein (TonEBP, also known as nuclear factor of activated T-cells 5 (NFAT5)), was initially identified as a central regulator of cellular responses to hypertonic stress and is a pleiotropic stress protein involved in a variety of immunometabolic diseases. To explore the role of TonEBP, we examined kidney biopsy samples from patients with LN. Kidney TonEBP expression was found to be elevated in these patients compared to control patients - in both kidney cells and infiltrating immune cells. Kidney TonEBP mRNA was elevated in LN and correlated with mRNAs encoding inflammatory cytokines and the degree of proteinuria. In a pristane-induced SLE model in mice, myeloid TonEBP deficiency blocked the development of SLE and LN. In macrophages, engagement of various toll-like receptors (TLRs) that respond to damage-associated molecular patterns induced TonEBP expression via stimulation of its promoter. Intracellular signaling downstream of the TLRs was dependent on TonEBP. Therefore, TonEBP can act as a transcriptional cofactor for NF-κB, and activated mTOR-IRF3/7 via protein-protein interactions. Additionally, TonEBP-deficient macrophages displayed elevated efferocytosis and animals with myeloid deficiency of TonEBP showed reduced Th1 and Th17 differentiation, consistent with macrophages defective in TLR signaling. Thus, our data show that myeloid TonEBP may be an attractive therapeutic target for SLE and LN.


Assuntos
Lúpus Eritematoso Sistêmico , Nefrite Lúpica , Animais , Camundongos , Rim , Transdução de Sinais , Macrófagos , Fatores de Transcrição NFATC
7.
J Med Virol ; 95(3): e28618, 2023 03.
Artigo em Inglês | MEDLINE | ID: mdl-36840410

RESUMO

Coronaviruses target ciliate cells causing the loss of cilia, acute rhinorrheas, and other ciliopathies. The loss of ciliary function may help the virus infect, replicate, and spread. However, the molecular mechanisms by which coronaviruses cause ciliary defects are still unclear. Herein we demonstrate how coronavirus infection and severe acute respiratory syndrome coronavirus2 3CL protease induce cilia dysfunction by targeting a host protein septin that is required for the structure and function of cilia. Further, we demonstrate that coronaviruses and 3CL protease lead to the cleavage of several septin proteins (SEPT2, -6, and -9), producing cleaved obstructive fragments. Furthermore, ectopic expression of cleaved SEPT2 fragments shows defective ciliogenesis, disoriented septin filaments, and ablated Sonic Hedgehog (SHH) signaling in a protease activity-dependent manner. We present that the 3CLpro inhibitors are potent and prevent abnormal ciliary structures and SHH signaling. These results provide useful insights into the general mechanisms underlying ciliary defects caused by coronaviruses, which, in turn, facilitate virus spread and prove that preclinical and clinical 3CL protease inhibitors may prove useful as therapeutics for treating ciliary defects of coronaviruses.


Assuntos
COVID-19 , Septinas , Humanos , Septinas/genética , Septinas/metabolismo , Proteínas Hedgehog/metabolismo , Peptídeo Hidrolases/metabolismo , Transdução de Sinais , Endopeptidases/metabolismo , Inibidores de Proteases/uso terapêutico
8.
Sensors (Basel) ; 23(4)2023 Feb 14.
Artigo em Inglês | MEDLINE | ID: mdl-36850745

RESUMO

As the use of drones grows, so too does the demand for physical protection against drone damage resulting from collisions and falls. In addition, as the flight environment becomes more complicated, a shock absorption system is required, in which the protective structure can be deformed based on the circumstances. Here, we present an origami- and kirigami-based structure that provides protection from various directions. This research adds a deformation capacity to existing fixed-shape guards; by using shape memory alloys, the diameter and height of the protective structure are controlled. We present three protective modes (1: large diameter/low height; 2: small diameter/large height; and 3: lotus shaped) that mitigate drone falls and side collisions. From the result of the drop impact test, mode 2 showed a 78.2% reduction in the maximum impact force at side impact. We incorporated kirigami patterns into the origami structures in order to investigate the aerodynamic effects of the hollow patterns. Airflow experiments yielded a macro understanding of flow-through behaviors on each kirigami pattern. In the wind speed experiment, the change in airflow velocity induced by the penetration of the kirigami pattern was measured, and in the force measurement experiment, the air force applied to the structure was determined.

9.
J Cell Sci ; 133(1)2020 01 08.
Artigo em Inglês | MEDLINE | ID: mdl-31831524

RESUMO

Store-operated Ca2+ entry (SOCE) is a major Ca2+ influx pathway that is controlled by the ER Ca2+ sensor STIM1. Abnormal activation of STIM1 directly influences Ca2+ influx, resulting in severe diseases such as Stormorken syndrome. The inactivation domain of STIM1 (IDstim) has been identified as being essential for Ca2+-dependent inactivation of STIM1 (CDI) after SOCE occurs. However, it is unknown whether IDstim is involved in keeping STIM1 inactive before CDI. Herein, we show that IDstim helps STIM1 keep inactive through intramolecular binding with the coiled-coil domain. Between IDstim and the coiled-coil domain, we found a short conserved linker whose extension or mutation leads to the constitutive activation of STIM1. We have demonstrated that IDstim needs the coiled-coil domain 1 (CC1) to inhibit the Ca2+ release-activated Ca2+ (CRAC) activation domain (CAD) activity and binds to a CC1-CAD fragment. Serial deletion of CC1 revealed that CC1α1 is a co-inhibitory domain of IDstim. CC1α1 deletion or leucine mutation, which abolishes the closed conformation, impaired the inhibitory effect and binding of IDstim. These results suggest that IDstim cooperates with CC1α1 to help STIM1 keep inactive under resting conditions.


Assuntos
Proteínas de Neoplasias/metabolismo , Molécula 1 de Interação Estromal/metabolismo , Cálcio/metabolismo , Células HEK293 , Humanos , Conformação Proteica , Domínios Proteicos
10.
Radiat Environ Biophys ; 61(3): 465-477, 2022 08.
Artigo em Inglês | MEDLINE | ID: mdl-35833987

RESUMO

Quinoa is one of the crops well-adapted to high altitude regions that can grow relatively well under drought, humid, and high UV radiation conditions. This study was performed to investigate the effects of gamma-radiation on quinoa. Seeds were treated with various doses of 50 Gy, 100 Gy, 200 Gy, 300 Gy, 400 Gy, 600 Gy, 800 Gy, and 1000 Gy. We investigated germination, as well as plant height, chlorophyll content, and normalized difference vegetation index (NDVI) at 0, 30, 44, 58, and 88 days after transplanting (DAT) and panicle weight at 88 DAT. The plants grown from the seeds treated at radiation doses greater than 200 Gy showed reduced values in most growth and physiological characteristics. The germination rate and germination speed were higher in the 50 Gy-treated seeds than in 0 Gy-treated (control) seeds. Plant height and panicle weight were highest in the plants from 50 Gy-treated seeds. Chlorophyll content was higher in all treated samples than in the controls. NDVI value showed the highest value in 0 Gy controls and plants treated with 50 Gy. The antioxidant activity was also higher in the plants from the seeds treated with 50 Gy and 100 Gy, showing a steady increase as the radiation dose increased even at 200 Gy. The plants from seeds treated with 0 Gy showed higher expression of proteins related to photorespiration and tubulin chains. The plants from seeds treated with 50 Gy induced more stress-responsive proteins.


Assuntos
Chenopodium quinoa , Chenopodium quinoa/metabolismo , Clorofila/metabolismo , Raios gama , Sementes/metabolismo , Sementes/efeitos da radiação
11.
J Korean Med Sci ; 37(29): e231, 2022 Jul 25.
Artigo em Inglês | MEDLINE | ID: mdl-35880507

RESUMO

BACKGROUND: Although depression and motion sickness are prevalent in military personnel and seafarers, the association between depression and seasickness has been not yet elucidated. We aimed to evaluate the relationship of depression with initial susceptibility and adaptation to seasickness amongst military seafarers. METHODS: This retrospective cohort enrolled Navy seafarers who started seafaring between 2017 and 2019. Three groups were established according to the Beck Depression Inventory (BDI) score: no depression (BDI score of 0), minimal depression (BDI score 1-9), and mild-to-moderate depression (BDI score 10-29). The occurrence of seasickness requiring treatment was observed as the prescription of medication for the first 30 distant seafaring days. Considering adjustment period, the two different outcomes were defined. The susceptibility to seasickness was evaluated via at least one day suffered from seasickness requiring treatment during the early period (the first 5 seafaring days), and adaptation ability to seasickness was defined by more than 10% of the ratio, calculated days suffered from seasickness requiring treatment/days of seafaring during the late period (the 6-30th seafaring days). Binary logistic regression was further evaluated to estimate the odds of BDI groups and BDI score adjusted for age and workplace whether outside visual perception was possible. RESULTS: Among the 185 recruits, 179 participants (97%) sailed for more than 5 days were included in the study. Of the participants, 36% was susceptible to seasickness in the early and 17% was poorly adapted to seasickness in the late period. Multivariable model revealed that mild-to-moderate depression had elevated risk of poor adaptation (odds ratio [OR], 4.63; 95% confidence interval [CI], 1.31-16.98) whereas the results were not statistically significant for susceptibility to seasickness in the early period BDI score was independently associated with increased odds of poor adaptation (OR, 1.10; 95% CI, 1.04-1.18). CONCLUSION: The present study suggests that depression is associated with poor adaptation to seasickness in Navy seafarers. Depression screening tool might be helpful for providing preventable strategies for population at risk.


Assuntos
Militares , Enjoo devido ao Movimento , Suscetibilidade a Doenças , Humanos , Enjoo devido ao Movimento/diagnóstico , Enjoo devido ao Movimento/epidemiologia , Estudos Retrospectivos
12.
Sensors (Basel) ; 22(21)2022 Nov 07.
Artigo em Inglês | MEDLINE | ID: mdl-36366271

RESUMO

The polymerase chain reaction is an important technique in biological research. However, it is time consuming and has a number of disadvantages. Therefore, real-time PCR technology that can be used in real-time monitoring has emerged, and many studies are being conducted regarding its use. Real-time PCR requires many optical components and imaging devices such as expensive, high-performance cameras. Therefore, its cost and assembly process are limitations to its use. Currently, due to the development of smart camera devices, small, inexpensive cameras and various lenses are being developed. In this paper, we present a Compact Camera Fluorescence Detector for use in parallel-light lens-based real-time PCR devices. The proposed system has a simple optical structure, the system cost can be reduced, and the size can be miniaturized. This system only incorporates Fresnel lenses without additional optics in order for the same field of view to be achieved for 25 tubes. In the center of the Fresnel lens, one LED and a complementary metal-oxide semiconductor camera were placed in directions that were as similar as possible. In addition, to achieve the accurate analysis of the results, image processing was used to correct them. As a result of an experiment using a reference fluorescent substance and double-distilled water, it was confirmed that stable fluorescence detection was possible.


Assuntos
Lentes , Dispositivos Ópticos , Reação em Cadeia da Polimerase em Tempo Real , Óptica e Fotônica , Processamento de Imagem Assistida por Computador
13.
Sensors (Basel) ; 22(22)2022 Nov 09.
Artigo em Inglês | MEDLINE | ID: mdl-36433221

RESUMO

Real-time Polymerase Chain Reaction (RT-PCR), a molecular diagnostic technology, is spotlighted as one of the quickest and fastest diagnostic methods for the actual coronavirus (SARS-CoV-2). However, the fluorescent label-based technology of the RT-PCR technique requires expensive equipment and a sample pretreatment process for analysis. Therefore, this paper proposes a biochip based on Electrochemical Impedance Spectroscopy (EIS). In this paper, it was possible to see the change according to the concentration by measuring the impedance with a chip made of two electrodes with different shapes of sample DNA.


Assuntos
COVID-19 , Amplificação de Genes , Humanos , RNA Viral/análise , SARS-CoV-2/genética , COVID-19/diagnóstico , Eletrodos
14.
Nano Lett ; 21(18): 7479-7485, 2021 09 22.
Artigo em Inglês | MEDLINE | ID: mdl-34491760

RESUMO

Many biological processes employ mechanisms involving the locations and interactions of multiple components. Given that most biological processes occur in three dimensions, the simultaneous measurement of three-dimensional locations and interactions is necessary. However, the simultaneous three-dimensional precise localization and measurement of interactions in real time remains challenging. Here, we report a new microscopy technique to localize two spectrally distinct particles in three dimensions with an accuracy (2.35σ) of tens of nanometers with an exposure time of 100 ms and to measure their real-time interactions using fluorescence resonance energy transfer (FRET) simultaneously. Using this microscope, we tracked two distinct vesicles containing t-SNAREs or v-SNARE in three dimensions and observed FRET simultaneously during single-vesicle fusion in real time, revealing the nanoscale motion and interactions of single vesicles in vesicle fusion. Thus, this study demonstrates that our microscope can provide detailed information about real-time three-dimensional nanoscale locations, motion, and interactions in biological processes.


Assuntos
Fenômenos Biológicos , Transferência Ressonante de Energia de Fluorescência , Fusão de Membrana , Microscopia , Proteínas SNARE
15.
Proc Natl Acad Sci U S A ; 115(20): E4623-E4632, 2018 05 15.
Artigo em Inglês | MEDLINE | ID: mdl-29712850

RESUMO

Store-operated calcium entry (SOCE), an important mechanism of Ca2+ signaling in a wide range of cell types, is mediated by stromal interaction molecule (STIM), which senses the depletion of endoplasmic reticulum Ca2+ stores and binds and activates Orai channels in the plasma membrane. This inside-out mechanism of Ca2+ signaling raises an interesting question about the evolution of SOCE: How did these two proteins existing in different cellular compartments evolve to interact with each other? We investigated the gating mechanism of Caenorhabditis elegans Orai channels. Our analysis revealed a mechanism of Orai gating by STIM binding to the intracellular 2-3 loop of Orai in C. elegans that is radically different from Orai gating by STIM binding to the N and C termini of Orai in mammals. In addition, we found that the conserved hydrophobic amino acids in the 2-3 loop of Orai1 are important for the oligomerization and gating of channels and are regulated via an intramolecular interaction mechanism mediated by the N and C termini of Orai1. This study identifies a previously unknown SOCE mechanism in C. elegans and suggests that, while the STIM-Orai interaction is conserved between invertebrates and mammals, the gating mechanism for Orai channels differs considerably.


Assuntos
Caenorhabditis elegans/metabolismo , Canais de Cálcio/metabolismo , Cálcio/metabolismo , Ativação do Canal Iônico , Proteína ORAI1/metabolismo , Molécula 1 de Interação Estromal/metabolismo , Sequência de Aminoácidos , Animais , Caenorhabditis elegans/genética , Canais de Cálcio/química , Canais de Cálcio/genética , Sinalização do Cálcio , Membrana Celular/metabolismo , Retículo Endoplasmático/metabolismo , Evolução Molecular , Células HEK293 , Humanos , Proteína ORAI1/química , Proteína ORAI1/genética , Homologia de Sequência , Molécula 1 de Interação Estromal/química , Molécula 1 de Interação Estromal/genética
16.
Sensors (Basel) ; 21(11)2021 Jun 06.
Artigo em Inglês | MEDLINE | ID: mdl-34204136

RESUMO

Most existing commercial real-time polymerase chain reaction (RT-PCR) instruments are bulky because they contain expensive fluorescent detection sensors or complex optical structures. In this paper, we propose an RT-PCR system using a camera module for smartphones that is an ultra small, high-performance and low-cost sensor for fluorescence detection. The proposed system provides stable DNA amplification. A quantitative analysis of fluorescence intensity changes shows the camera's performance compared with that of commercial instruments. Changes in the performance between the experiments and the sets were also observed based on the threshold cycle values in a commercial RT-PCR system. The overall difference in the measured threshold cycles between the commercial system and the proposed camera was only 0.76 cycles, verifying the performance of the proposed system. The set calibration even reduced the difference to 0.41 cycles, which was less than the experimental variation in the commercial system, and there was no difference in performance.


Assuntos
Técnicas de Amplificação de Ácido Nucleico , Smartphone , Análise de Sequência com Séries de Oligonucleotídeos , Reação em Cadeia da Polimerase em Tempo Real
17.
Sensors (Basel) ; 21(20)2021 Oct 10.
Artigo em Inglês | MEDLINE | ID: mdl-34695940

RESUMO

With the active development of mobile devices, a variety of ultra-small, high-definition, and open platform-based cameras are being mass-produced. In this paper, we established an emulation system to verify the bio-imaging performance of the bulky and expensive high-performance cameras and various smartphone cameras that have been used in bio-imaging devices. In the proposed system, the linearity of the brightness gradient change of four types of cameras was compared and analyzed. Based on these results, three cameras were selected in order of excellent linearity, and gel image analysis results were compared.


Assuntos
Processamento de Imagem Assistida por Computador , Smartphone , Computadores de Mão , Diagnóstico por Imagem
18.
Sensors (Basel) ; 21(21)2021 Oct 20.
Artigo em Inglês | MEDLINE | ID: mdl-34770252

RESUMO

The lack of portability and high cost of multiplex real-time PCR systems limits the device to be used in POC. To overcome this issue, this paper proposes a compact and cost-effective fluorescence detection system that can be integrated to a multiplex real-time PCR equipment. An open platform camera with embedded lens was used instead of photodiodes or an industrial camera. A compact filter wheel using a sliding tape is integrated, and the excitation LEDs are fixed at a 45° angle near the PCR chip, eliminating the need of additional filter wheels. The results show precise positioning of the filter wheel with an error less than 20 µm. Fluorescence detection results using a reference dye and standard DNA amplification showed comparable performance to that of the photodiode system.


Assuntos
Técnicas de Amplificação de Ácido Nucleico , Análise Custo-Benefício , Análise de Sequência com Séries de Oligonucleotídeos , Reação em Cadeia da Polimerase
19.
Sensors (Basel) ; 21(21)2021 Oct 21.
Artigo em Inglês | MEDLINE | ID: mdl-34770286

RESUMO

This paper proposes a cloud-based software architecture for fully automated point-of-care molecular diagnostic devices. The target system operates a cartridge consisting of an extraction body for DNA extraction and a PCR chip for amplification and fluorescence detection. To facilitate control and monitoring via the cloud, a socket server was employed for fundamental molecular diagnostic functions such as DNA extraction, amplification, and fluorescence detection. The user interface for experimental control and monitoring was constructed with the RESTful application programming interface, allowing access from the terminal device, edge, and cloud. Furthermore, it can also be accessed through any web-based user interface on smart computing devices such as smart phones or tablets. An emulator with the proposed software architecture was fabricated to validate successful operation.


Assuntos
Computação em Nuvem , Sistemas Automatizados de Assistência Junto ao Leito , Computadores , Patologia Molecular , Software
20.
Sensors (Basel) ; 21(21)2021 Oct 22.
Artigo em Inglês | MEDLINE | ID: mdl-34770319

RESUMO

The polymerase chain reaction is an important technique in biological research because it tests for diseases with a small amount of DNA. However, this process is time consuming and can lead to sample contamination. Recently, real-time PCR techniques have emerged which make it possible to monitor the amplification process for each cycle in real time. Existing camera-based systems that measure fluorescence after DNA amplification simultaneously process fluorescence excitation and emission for dozens of tubes. Therefore, there is a limit to the size, cost, and assembly of the optical element. In recent years, imaging devices for high-performance, open platforms have benefitted from significant innovations. In this paper, we propose a fluorescence detector for real-time PCR devices using an open platform camera. This system can reduce the cost, and can be miniaturized. To simplify the optical system, four low-cost, compact cameras were used. In addition, the field of view of the entire tube was minimized by dividing it into quadrants. An effective image processing method was used to compensate for the reduction in the signal-to-noise ratio. Using a reference fluorescence material, it was confirmed that the proposed system enables stable fluorescence detection according to the amount of DNA.


Assuntos
DNA , Técnicas de Amplificação de Ácido Nucleico , Fluorescência , Reação em Cadeia da Polimerase em Tempo Real , Razão Sinal-Ruído
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa