Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Radiother Oncol ; 193: 110111, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38286241

RESUMO

BACKGROUND AND PURPOSE: To investigate the molecular mechanism by which irradiated macrophages secrete cytosolic double-stranded DNA (c-dsDNA) to increase radiosensitivity of tumors. MATERIALS AND METHODS: Irradiated bone marrow-derived macrophages (BMDM) were co-incubated with irradiated EO771 or MC38 cancer cells to determine clonogenic survival. c-dsDNA were measured by agarose gel or enzyme-linked immunosorbent assay. BMDM or cancer cells were analyzed with immunostaining or western blot. Subcutaneously implanted MC38 cells in myeloid-specific Prkdc knockout (KO) mice or littermate control mice were irradiated with 8 Gy to determine radiosensitivity of tumors. RESULTS: We observed that irradiated BMDM significantly increased radiosensitivity of cancer cells. By performing immunostaining, we found that there was a dose-dependent increase in the formation of c-dsDNA and phosphorylation in DNA-dependent protein kinase (DNA-PK) in irradiated BMDM. Importantly, c-dsDNA in irradiated BMDM could be secreted to the extracellular milieu and this process required DNA-PK, which phosphorylated myosin light chain to regulate the secretion. The secreted c-dsDNA from irradiated BMDM then activated toll-like receptor-9 and subsequent nuclear factor kappa-light-chain-enhancer of activated B cells signaling in the adjacent cancer cells inhibiting radiation-induced DNA double strand break repair. Lastly, we observed that irradiated tumors in vivo had a significantly increased number of tumor-associated macrophages (TAM) with phosphorylated DNA-PK expression in the cytosol. Furthermore, tumors grown in myeloid-specific Prkdc KO mice, in which TAM lacked phosphorylated DNA-PK expression were significantly more radioresistant than those of the wild-type control mice. CONCLUSIONS: Irradiated macrophages can increase antitumor efficacy of radiotherapy through secretion of c-dsDNA under the regulation of DNA-PK.


Assuntos
Proteína Quinase Ativada por DNA , Neoplasias , Camundongos , Animais , Citosol/metabolismo , Tolerância a Radiação , Macrófagos , DNA
2.
Lab Anim Res ; 40(1): 14, 2024 Apr 08.
Artigo em Inglês | MEDLINE | ID: mdl-38589968

RESUMO

BACKGROUND: Gastrodia elata Blume (GEB), a traditional medicinal herb, has been reported to have pharmacological effect including protection against liver, neuron and kidney toxicity. However, explanation of its underlying mechanisms remains a great challenge. This study investigated the protective effects of GEB extract on vancomycin (VAN)-induced nephrotoxicity in rats and underlying mechanisms with emphasis on the anti-oxidative stress, anti-inflammation and anti-apoptosis. The male Sprague-Dawley rats were randomly divided three groups: control (CON) group, VAN group and GEB group with duration of 14 days. RESULTS: The kidney weight and the serum levels of blood urea nitrogen and creatinine in the GEB group were lower than the VAN group. Histological analysis using hematoxylin & eosin and periodic acid Schiff staining revealed pathological changes of the VAN group. Immunohistochemical analysis revealed that the expression levels of N-acetyl-D-glucosaminidase, myeloperoxidase and tumor necrosis factor-alpha in the GEB group were decreased when compared with the VAN group. The number of terminal deoxynucleotidyl transferase-mediated dUTP nick end labeling-positive cells, phosphohistone and malondialdehyde levels were lower in the GEB group than VAN group. The levels of total glutathione in the GEB group were higher than the VAN group. CONCLUSIONS: The findings of this study suggested that GEB extract prevents VAN-induced renal tissue damage through anti-oxidation, anti-inflammation and anti-apoptosis.

3.
Acta Pharmacol Sin ; 34(9): 1208-16, 2013 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-23852087

RESUMO

AIM: Disulfiram is an aldehyde dehydrogenase inhibitor that was used to treat alcoholism and showed anticancer activity, but its anticancer mechanism remains unclear. The aim of this study was to investigate the effects of disulfiram on the hypoxia-inducible factor (HIF)-driven tumor adaptation to hypoxia in vitro. METHODS: Hep3B, Huh7 and HepG2 hepatoma cells were incubated under normoxic (20% O2) or hypoxic (1% O2) conditions for 16 h. The expression and activity of HIF-1α and HIF-2α proteins were evaluated using immunoblotting and luciferase reporter assay, respectively. Semi-quantitative RT-PCR was used to analyze HIF-mediated gene expression. Endothelial tubule formation assay was used to evaluate the anti-angiogenic effect. RESULTS: Hypoxia caused marked expression of HIF-1α and HIF-1α in the 3 hepatoma cell lines, dramatically increased HIF activity and induced the expression of HIF downstream genes (EPO, CA9, VEGF-A and PDK1) in Hep3B cells. HIF-2α expression was positively correlated with the induction of hypoxic genes (CA9, VEGF-A and PDK1). Moreover, hypoxia markedly increased VEGF production and angiogenic potential of Hep3B cells. Disulfiram (0.3 to 2 µmol/L) inhibited hypoxia-induced gene expression and HIF activity in a dose-dependent manner. Disulfiram more effectively suppressed the viability of Hep3B cells under hypoxia, but it did not affect the cell cycle. Overexpression of HIF-2α in Hep3B cells reversed the inhibitory effects of disulfiram on hypoxia-induced gene expression and cell survival under hypoxia. CONCLUSION: Disulfiram deregulates the HIF-mediated hypoxic signaling pathway in hepatoma cells, which may contribute to its anticancer effect. Thus, disulfiram could be used to treat solid tumors that grow in a HIF-dependent manner.


Assuntos
Fatores de Transcrição Hélice-Alça-Hélice Básicos/antagonistas & inibidores , Fatores de Transcrição Hélice-Alça-Hélice Básicos/biossíntese , Carcinoma Hepatocelular/metabolismo , Dissulfiram/farmacologia , Subunidade alfa do Fator 1 Induzível por Hipóxia/antagonistas & inibidores , Subunidade alfa do Fator 1 Induzível por Hipóxia/biossíntese , Adaptação Fisiológica/efeitos dos fármacos , Adaptação Fisiológica/fisiologia , Carcinoma Hepatocelular/tratamento farmacológico , Hipóxia Celular/efeitos dos fármacos , Hipóxia Celular/fisiologia , Sobrevivência Celular/efeitos dos fármacos , Sobrevivência Celular/fisiologia , Relação Dose-Resposta a Droga , Células Hep G2 , Células Endoteliais da Veia Umbilical Humana/efeitos dos fármacos , Células Endoteliais da Veia Umbilical Humana/metabolismo , Humanos , Subunidades Proteicas/antagonistas & inibidores , Subunidades Proteicas/biossíntese
4.
Mol Cells ; 46(4): 200-205, 2023 Apr 30.
Artigo em Inglês | MEDLINE | ID: mdl-36756777

RESUMO

DNA-dependent protein kinase catalytic subunit (DNA-PKcs), a member of the phosphatidylinositol 3-kinase related kinase family is a well-known player in repairing DNA double strand break through non-homologous end joining pathway. This mechanism has allowed us to understand its critical role in T and B cell development through V(D)J recombination and class switch recombination, respectively. We have also learned that the defects in these mechanisms lead to severely combined immunodeficiency (SCID). Here we highlight some of the latest evidence where DNA-PKcs has been shown to localize not only in the nucleus but also in the cytoplasm, phosphorylating various proteins involved in cellular metabolism and cytokine production. While it is an exciting time to unveil novel functions of DNA-PKcs, one should carefully choose experimental models to study DNA-PKcs as the experimental evidence has been shown to differ between cells of defective DNA-PKcs and those of DNA-PKcs knockout. Moreover, while there are several DNA-PK inhibitors currently being evaluated in the clinical trials in attempt to increase the efficacy of radiotherapy or chemotherapy, multiple functions and subcellular localization of DNA-PKcs in various types of cells may further complicate the effects at the cellular and organismal level.


Assuntos
Proteína Quinase Ativada por DNA , Proteínas de Ligação a DNA , Proteína Quinase Ativada por DNA/genética , Proteína Quinase Ativada por DNA/metabolismo , Proteínas de Ligação a DNA/metabolismo , Domínio Catalítico , Reparo do DNA , DNA
5.
Brain Tumor Res Treat ; 11(4): 223-231, 2023 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-37953445

RESUMO

FLASH radiotherapy (FLASH RT) is a technique to deliver ultra-high dose rate in a fraction of a second. Evidence from experimental animal models suggest that FLASH RT spares various normal tissues including the lung, gastrointestinal track, and brain from radiation-induced toxicity (a phenomenon known as FLASH effect), which is otherwise commonly observed with conventional dose rate RT. However, it is not simply the ultra-high dose rate alone that brings the FLASH effect. Multiple parameters such as instantaneous dose rate, pulse size, pulse repetition frequency, and the total duration of exposure all need to be carefully optimized simultaneously. Furthermore it is critical to validate FLASH effects in an in vivo experimental model system. The exact molecular mechanism responsible for this FLASH effect is not yet understood although a number of hypotheses have been proposed including oxygen depletion and less reactive oxygen species (ROS) production by FLASH RT, and enhanced ability of normal tissues to handle ROS and labile iron pool compared to tumors. In this review, we briefly overview the process of ionization event and history of radiotherapy and fractionation of ionizing radiation. We also highlight some of the latest FLASH RT reviews and results with a special interest to neurocognitive protection in rodent model with whole brain irradiation. Lastly we discuss some of the issues remain to be answered with FLASH RT including undefined molecular mechanism, lack of standardized parameters, low penetration depth for electron beam, and tumor hypoxia still being a major hurdle for local control. Nevertheless, researchers are close to having all answers to the issues that we have raised, hence we believe that advancement of FLASH RT will be made more quickly than one can anticipate.

6.
Exp Mol Med ; 55(11): 2300-2307, 2023 11.
Artigo em Inglês | MEDLINE | ID: mdl-37907745

RESUMO

Adipose tissues, composed of various cell types, including adipocytes, endothelial cells, neurons, and immune cells, are organs that are exposed to dynamic environmental challenges. During diet-induced obesity, white adipose tissues experience hypoxia due to adipocyte hypertrophy and dysfunctional vasculature. Under these conditions, cells in white adipose tissues activate hypoxia-inducible factor (HIF), a transcription factor that activates signaling pathways involved in metabolism, angiogenesis, and survival/apoptosis to adapt to such an environment. Exposure to cold or activation of the ß-adrenergic receptor (through catecholamines or chemicals) leads to heat generation, mainly in brown adipose tissues through activating uncoupling protein 1 (UCP1), a proton uncoupler in the inner membrane of the mitochondria. White adipose tissues can undergo a similar process under this condition, a phenomenon known as 'browning' of white adipose tissues or 'beige adipocytes'. While UCP1 expression has largely been confined to adipocytes, HIF can be expressed in many types of cells. To dissect the role of HIF in specific types of cells during diet-induced obesity, researchers have generated tissue-specific knockout (KO) mice targeting HIF pathways, and many studies have commonly revealed that intact HIF-1 signaling in adipocytes and adipose tissue macrophages exacerbates tissue inflammation and insulin resistance. In this review, we highlight some of the key findings obtained from these transgenic mice, including Ucp1 KO mice and other models targeting the HIF pathway in adipocytes, macrophages, or endothelial cells, to decipher their roles in diet-induced obesity.


Assuntos
Células Endoteliais , Oxigênio , Camundongos , Animais , Temperatura , Oxigênio/metabolismo , Células Endoteliais/metabolismo , Termogênese , Tecido Adiposo Marrom/metabolismo , Tecido Adiposo Branco/metabolismo , Obesidade/metabolismo , Hipóxia/metabolismo , Camundongos Endogâmicos C57BL
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa