Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 34
Filtrar
1.
Exp Cell Res ; 321(2): 297-306, 2014 Feb 15.
Artigo em Inglês | MEDLINE | ID: mdl-24240126

RESUMO

Toward developing biologically sound models for the study of heart regeneration and disease, we cultured heart cells on a biodegradable, microfabricated poly(glycerol sebacate) (PGS) scaffold designed with micro-structural features and anisotropic mechanical properties to promote cardiac-like tissue architecture. Using this biomimetic system, we studied individual and combined effects of supplemental insulin-like growth factor-1 (IGF-1) and electrical stimulation (ES). On culture day 8, all tissue constructs could be paced and expressed the cardiac protein troponin-T. IGF-1 reduced apoptosis, promoted cell-to-cell connectivity, and lowered excitation threshold, an index of electrophysiological activity. ES promoted formation of tissue-like bundles oriented in parallel to the electrical field and a more than ten-fold increase in matrix metalloprotease-2 (MMP-2) gene expression. The combination of IGF-1 and ES increased 2D projection length, an index of overall contraction strength, and enhanced expression of the gap junction protein connexin-43 and sarcomere development. This culture environment, designed to combine cardiac-like scaffold architecture and biomechanics with molecular and biophysical signals, enabled functional assembly of engineered heart muscle from dissociated cells and could serve as a template for future studies on the hierarchy of various signaling domains relative to cardiac tissue development.


Assuntos
Materiais Biomiméticos/farmacologia , Coração , Peptídeos e Proteínas de Sinalização Intercelular/farmacologia , Miocárdio/citologia , Engenharia Tecidual/métodos , Alicerces Teciduais/química , Animais , Animais Recém-Nascidos , Fenômenos Biomecânicos , Materiais Biomiméticos/química , Células Cultivadas , Estimulação Elétrica/métodos , Coração/efeitos dos fármacos , Coração/fisiologia , Microtecnologia , Ratos , Ratos Sprague-Dawley , Engenharia Tecidual/instrumentação
2.
Biotechnol Bioeng ; 108(7): 1716-25, 2011 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-21337339

RESUMO

Sterilization of soft biomaterials such as hydrogels is challenging because existing methods such as gamma irradiation, steam sterilization, or ethylene oxide sterilization, while effective at achieving high sterility assurance levels (SAL), may compromise their physicochemical properties and biocompatibility. New methods that effectively sterilize soft biomaterials without compromising their properties are therefore required. In this report, a dense-carbon dioxide (CO(2) )-based technique was used to sterilize soft polyethylene glycol (PEG)-based hydrogels while retaining their structure and physicochemical properties. Conventional sterilization methods such as gamma irradiation and steam sterilization severely compromised the structure of the hydrogels. PEG hydrogels with high water content and low elastic shear modulus (a measure of stiffness) were deliberately inoculated with bacteria and spores and then subjected to dense CO(2) . The dense CO(2) -based methods effectively sterilized the hydrogels achieving a SAL of 10(-7) without compromising the viscoelastic properties, pH, water-content, and structure of the gels. Furthermore, dense CO(2) -treated gels were biocompatible and non-toxic when implanted subcutaneously in ferrets. The application of novel dense CO(2) -based methods to sterilize soft biomaterials has implications in developing safe sterilization methods for soft biomedical implants such as dermal fillers and viscosupplements.


Assuntos
Materiais Biocompatíveis , Dióxido de Carbono/farmacologia , Desinfetantes/farmacologia , Gases/farmacologia , Viabilidade Microbiana/efeitos dos fármacos , Esterilização/métodos , Bactérias/efeitos dos fármacos , Hidrogéis/química , Polietilenoglicóis , Esporos Bacterianos/efeitos dos fármacos
3.
Ann Otol Rhinol Laryngol ; 120(3): 175-84, 2011 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-21510143

RESUMO

OBJECTIVES: Most cases of irresolvable hoarseness are due to deficiencies in the pliability and volume of the superficial lamina propria of the phonatory mucosa. By using a US Food and Drug Administration-approved polymer, polyethylene glycol (PEG), we created a novel hydrogel (PEG30) and investigated its effects on multiple vocal fold structural and functional parameters. METHODS: We injected PEG30 unilaterally into 16 normal canine vocal folds with survival times of 1 to 4 months. High-speed videos of vocal fold vibration, induced by intratracheal airflow, and phonation threshold pressures were recorded at 4 time points per subject. Three-dimensional reconstruction analysis of 11.7 T magnetic resonance images and histologic analysis identified 3 cases wherein PEG30 injections were the most superficial, so as to maximally impact vibratory function. These cases were subjected to in-depth analyses. RESULTS: High-speed video analysis of the 3 selected cases showed minimal to no reduction in the maximum vibratory amplitudes of vocal folds injected with PEG30 compared to the non-injected, contralateral vocal fold. All PEG30-injected vocal folds displayed mucosal wave activity with low average phonation threshold pressures. No significant inflammation was observed on microlaryngoscopic examination. Magnetic resonance imaging and histologic analyses revealed time-dependent resorption of the PEG30 hydrogel by phagocytosis with minimal tissue reaction or fibrosis. CONCLUSIONS: The PEG30 hydrogel is a promising biocompatible candidate biomaterial to restore form and function to deficient phonatory mucosa, while not mechanically impeding residual endogenous superficial lamina propria.


Assuntos
Hidrogéis/farmacologia , Mucosa Laríngea/efeitos dos fármacos , Fonação , Polietilenoglicóis/farmacologia , Prega Vocal/efeitos dos fármacos , Animais , Cães , Elasticidade , Fibrose , Injeções , Laringoscopia , Laringe/patologia , Macrófagos/patologia , Imageamento por Ressonância Magnética , Masculino , Modelos Animais , Fagocitose , Viscosidade
4.
J Tissue Eng Regen Med ; 13(8): 1453-1465, 2019 08.
Artigo em Inglês | MEDLINE | ID: mdl-31115161

RESUMO

The development of mechanically functional cartilage and bone tissue constructs of clinically relevant size, as well as their integration with native tissues, remains an important challenge for regenerative medicine. The objective of this study was to assess adult human mesenchymal stem cells (MSCs) in large, three-dimensionally woven poly(ε-caprolactone; PCL) scaffolds in proximity to viable bone, both in a nude rat subcutaneous pouch model and under simulated conditions in vitro. In Study I, various scaffold permutations-PCL alone, PCL-bone, "point-of-care" seeded MSC-PCL-bone, and chondrogenically precultured Ch-MSC-PCL-bone constructs-were implanted in a dorsal, ectopic pouch in a nude rat. After 8 weeks, only cells in the Ch-MSC-PCL constructs exhibited both chondrogenic and osteogenic gene expression profiles. Notably, although both tissue profiles were present, constructs that had been chondrogenically precultured prior to implantation showed a loss of glycosaminoglycan (GAG) as well as the presence of mineralization along with the formation of trabecula-like structures. In Study II of the study, the GAG loss and mineralization observed in Study I in vivo were recapitulated in vitro by the presence of either nearby bone or osteogenic culture medium additives but were prevented by a continued presence of chondrogenic medium additives. These data suggest conditions under which adult human stem cells in combination with polymer scaffolds synthesize functional and phenotypically distinct tissues based on the environmental conditions and highlight the potential influence that paracrine factors from adjacent bone may have on MSC fate, once implanted in vivo for chondral or osteochondral repair.


Assuntos
Diferenciação Celular , Condrogênese , Células-Tronco Mesenquimais/citologia , Osteogênese , Alicerces Teciduais/química , Adulto , Animais , Bovinos , Diferenciação Celular/genética , Condrogênese/genética , Feminino , Regulação da Expressão Gênica , Humanos , Hipertrofia , Implantes Experimentais , Osteogênese/genética , Poliésteres/química , Ratos Nus , Microtomografia por Raio-X
5.
Sci Transl Med ; 11(517)2019 11 06.
Artigo em Inglês | MEDLINE | ID: mdl-31694927

RESUMO

Nonclinical rodent and nonrodent toxicity models used to support clinical trials of candidate drugs may produce discordant results or fail to predict complications in humans, contributing to drug failures in the clinic. Here, we applied microengineered Organs-on-Chips technology to design a rat, dog, and human Liver-Chip containing species-specific primary hepatocytes interfaced with liver sinusoidal endothelial cells, with or without Kupffer cells and hepatic stellate cells, cultured under physiological fluid flow. The Liver-Chip detected diverse phenotypes of liver toxicity, including hepatocellular injury, steatosis, cholestasis, and fibrosis, and species-specific toxicities when treated with tool compounds. A multispecies Liver-Chip may provide a useful platform for prediction of liver toxicity and inform human relevance of liver toxicities detected in animal studies to better determine safety and human risk.


Assuntos
Efeitos Colaterais e Reações Adversas Relacionados a Medicamentos/patologia , Dispositivos Lab-On-A-Chip , Fígado/patologia , Animais , Biomarcadores/metabolismo , Doença Hepática Induzida por Substâncias e Drogas/patologia , Cães , Humanos , Células de Kupffer/metabolismo , Fígado/lesões , Hepatopatias/patologia , Fenótipo , Ratos , Reprodutibilidade dos Testes , Fatores de Risco , Especificidade da Espécie
6.
Clin Pharmacol Ther ; 104(6): 1240-1248, 2018 12.
Artigo em Inglês | MEDLINE | ID: mdl-29484632

RESUMO

Clinical development of Hu5c8, a monoclonal antibody against CD40L intended for treatment of autoimmune disorders, was terminated due to unexpected thrombotic complications. These life-threatening side effects were not discovered during preclinical testing due to the lack of predictive models. In the present study, we describe the development of a microengineered system lined by human endothelium perfused with human whole blood, a "Vessel-Chip." The Vessel-Chip allowed us to evaluate key parameters in thrombosis, such as endothelial activation, platelet adhesion, platelet aggregation, fibrin clot formation, and thrombin anti-thrombin complexes in the Chip-effluent in response to Hu5c8 in the presence of soluble CD40L. Importantly, the observed prothrombotic effects were not observed with Hu5c8-IgG2σ designed with an Fc domain that does not bind the FcγRIIa receptor, suggesting that this approach may have a low potential risk for thrombosis. Our results demonstrate the translational potential of Organs-on-Chips, as advanced microengineered systems to better predict human response.


Assuntos
Anticorpos Monoclonais Humanizados/toxicidade , Doenças Autoimunes/tratamento farmacológico , Coagulação Sanguínea/efeitos dos fármacos , Ligante de CD40/antagonistas & inibidores , Desenho de Fármacos , Desenvolvimento de Medicamentos/instrumentação , Fatores Imunológicos/toxicidade , Dispositivos Lab-On-A-Chip , Procedimentos Analíticos em Microchip , Trombose/induzido quimicamente , Anticorpos Monoclonais Humanizados/metabolismo , Doenças Autoimunes/imunologia , Plaquetas/efeitos dos fármacos , Plaquetas/metabolismo , Ligante de CD40/imunologia , Células Endoteliais/efeitos dos fármacos , Células Endoteliais/metabolismo , Fatores Imunológicos/metabolismo , Estudos Prospectivos , Receptores de IgG/metabolismo , Estudos Retrospectivos , Medição de Risco , Trombose/sangue
7.
Tissue Eng ; 13(11): 2709-19, 2007 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-17708718

RESUMO

We tested the hypothesis that supplemental regulatory factors can improve the contractile properties and viability of cardiac tissue constructs cultured in vitro. Neonatal rat heart cells were cultured on porous collagen sponges for up to 8 days in basal medium or medium supplemented with insulin-like growth factor-I (IGF), insulin-transferrin-selenium (ITS), platelet-derived growth factor-BB (PDGF), or angiopoietin-1 (ANG). IGF and ITS enhanced contractile properties of the 8-day constructs significantly more than with unsupplemented controls according to contractile amplitude and excitation threshold, and IGF also significantly increased the amount of cardiac troponin-I and enhanced cell viability according to different assays (3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT), lactate dehydrogenase (LDH), and terminal deoxynucleotidyl transferase biotin-2'-deoxyuridine 5'-triphosphate nick end labeling (TUNEL)). PDGF significantly increased the contractile amplitude of 4-day constructs and enhanced cell viability according to MTT, LDH, and TUNEL; ANG enhanced cell viability according to the LDH assay. Our results demonstrate that supplemental regulatory molecules can differentially enhance properties of cardiac tissue constructs and imply that these constructs can provide a platform for systematic in vitro studies of the effects of complex stimuli that occur in vivo to improve our basic understanding of cardiogenesis and identify underlying mechanisms that can potentially be exploited to enhance myocardial regeneration.


Assuntos
Angiopoietina-1/farmacologia , Fator de Crescimento Insulin-Like I/farmacologia , Insulina/farmacologia , Miocárdio/citologia , Miócitos Cardíacos/efeitos dos fármacos , Fator de Crescimento Derivado de Plaquetas/farmacologia , Animais , Animais Recém-Nascidos , Sobrevivência Celular/efeitos dos fármacos , Colágeno/química , Relação Dose-Resposta a Droga , Combinação de Medicamentos , Matriz Extracelular/química , Formazans/metabolismo , Glucose/metabolismo , Técnicas In Vitro , Lactatos/metabolismo , Laminina/química , Contração Miocárdica/fisiologia , Porosidade , Proteoglicanas/química , Ratos , Ratos Sprague-Dawley , Sais de Tetrazólio/metabolismo , Fatores de Tempo , Alicerces Teciduais/química
8.
Tissue Eng ; 13(8): 1867-77, 2007 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-17518744

RESUMO

The burgeoning field of regenerative medicine promises significant progress in the treatment of cardiac ischemia, liver disease, and spinal cord injury. Key to its success will be the ability to engineer tissue safely and reliably. Tissue functionality must be recapitulated in the laboratory and then integrated into surrounding tissue upon transfer to the patient. Scaffolding materials must be chosen such that the microenvironment surrounding the cells is a close analog of the native environment. In the early days of tissue engineering, these materials were largely borrowed from other fields, with much of the focus on biocompatibility and biodegradation. However, attention has shifted recently to cell-cell and cell-surface interactions, largely because of enabling technologies at the nanoscale and microscale. Studies on cellular behavior in response to various stimuli are now easily realized by using microfabrication techniques and devices (e.g., biomedical microelectromechanical systems). These experiments are reproducible and moderate in cost, and often can be accomplished at high throughput, providing the fundamental knowledge required to design biomaterials that closely mimic the biological system. It is our opinion that these novel materials and technologies will bring engineered tissues one step closer to practical application in the clinic. This review discusses their application to cardiac, liver, and nerve tissue engineering.


Assuntos
Materiais Biocompatíveis/síntese química , Nanoestruturas , Nanotecnologia , Engenharia Tecidual/instrumentação , Engenharia Tecidual/métodos , Animais , Humanos
9.
Methods Mol Med ; 140: 291-307, 2007.
Artigo em Inglês | MEDLINE | ID: mdl-18085215

RESUMO

Heart disease is a leading cause of death in western society. Despite the success of heart transplantation, a chronic shortage of donor organs, along with the associated immunological complications of this approach, demands that alternative treatments be found. One such option is to repair, rather than replace, the heart with engineered cardiac tissue. Multiple studies have shown that to attain functional tissue, assembly signaling cues must be recapitulated in vitro. In their native environment, cardiomyocytes are directed to beat in synchrony by propagation of pacing current through the tissue. Recently, we have shown that electrical stimulation directs neonatal cardiomyocytes to assemble into native-like tissue in vitro. This chapter provides detailed methods we have employed in taking this "biomimetic" approach. After an initial discussion on how electric field stimulation can influence cell behavior, we examine the practical aspects of cardiac tissue engineering with electrical stimulation, such as electrode selection and cell seeding protocols, and conclude with what we feel are the remaining challenges to be overcome.


Assuntos
Estimulação Elétrica , Coração , Engenharia Tecidual/métodos , Animais , Animais Recém-Nascidos , Órgãos Bioartificiais , Reatores Biológicos , Técnicas de Cultura de Células , Células Cultivadas , Coração/anatomia & histologia , Coração/fisiologia , Humanos , Contração Miocárdica/fisiologia , Miócitos Cardíacos/citologia , Miócitos Cardíacos/metabolismo , Ratos , Ratos Sprague-Dawley
10.
Int J Dev Biol ; 50(2-3): 233-43, 2006.
Artigo em Inglês | MEDLINE | ID: mdl-16479491

RESUMO

Tissue engineering combines the principles of biology, engineering and medicine to create biological substitutes of native tissues, with an overall objective to restore normal tissue function. It is thought that the factors regulating tissue development in vivo (genetic, molecular and physical) can also direct cell fate and tissue assembly in vitro. In light of this paradigm, tissue engineering can be viewed as an effort of "imitating nature". We first discuss biophysical regulation during cardiac development and the factors of interest for application in tissue engineering of the myocardium. Then we focus on the biomimetic approach to cardiac tissue engineering which involves the use of culture systems designed to recapitulate some aspects of the actual in vivo environment. To mimic cell signaling in native myocardium, subpopulations of neonatal rat heart cells were cultured at a physiologically high cell density in three-dimensional polymer scaffolds. To mimic the capillary network, highly porous elastomer scaffolds with arrays of parallel channels were perfused with culture medium. To mimic oxygen supply by hemoglobin, culture medium was supplemented with an oxygen carrier. To enhance electromechanical coupling, tissue constructs were induced to contract by applying electrical signals mimicking those in native heart. Over only eight days of cultivation, the biomimetic approach resulted in tissue constructs which contained electromechanically coupled cells expressing cardiac differentiation markers and cardiac-like ultrastructure and contracting synchronously in response to electrical stimulation. Ongoing studies are aimed at extending this approach to tissue engineering of functional cardiac grafts based on human cells.


Assuntos
Biofísica , Coração/embriologia , Engenharia Tecidual , Animais , Biofísica/métodos , Miocárdio/metabolismo , Oxigênio/fisiologia , Engenharia Tecidual/métodos
11.
Tissue Eng ; 12(8): 2077-91, 2006 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-16968150

RESUMO

We report that the functional assembly of engineered cardiac muscle can be enhanced by oxygen supply provided by mechanisms resembling those in normal vascularized tissues. To mimic the capillary network, cardiomyocytes and fibroblasts isolated from the neonatal rat hearts were cultured on a highly porous elastomer with a parallel array of channels that were perfused with culture medium. To mimic oxygen supply by hemoglobin, culture medium was supplemented with a perfluorocarbon (PFC) emulsion; constructs perfused with unsupplemented culture medium served as controls. In PFC-supplemented medium, the decrease in the partial pressure of oxygen in the aqueous phase was only 50% of that in control medium (28 mmHg vs. 45 mmHg between the construct inlet and outlet at a flow rate of 0.1 mL/min). Consistently, constructs cultivated in the presence of PFC contained higher amounts of DNA and cardiac markers (troponin I, connexin-43) and had significantly better contractile properties as compared to control constructs. In both groups, electron microscopy revealed open channels and the presence of cells at the channel surfaces as well as within constructs. Improved properties of cardiac constructs could be correlated with the enhanced supply of oxygen to the cells, by a combined use of channeled scaffolds and PFC.


Assuntos
Materiais Biomiméticos , Miocárdio/metabolismo , Oxigênio/metabolismo , Animais , Animais Recém-Nascidos , Células Cultivadas , Estudos de Viabilidade , Fluorocarbonos/metabolismo , Ratos , Ratos Sprague-Dawley
12.
Tissue Eng ; 11(7-8): 1122-32, 2005.
Artigo em Inglês | MEDLINE | ID: mdl-16144448

RESUMO

Hybrid cardiac constructs with mechanical properties suitable for in vitro loading studies and in vivo implantation were constructed from neonatal rat heart cells, fibrin (Fn), and biodegradable knitted fabric (Knit). Initial (2-h) constructs were compared with native heart tissue, studied in vitro with respect to mechanical function (stiffness, ultimate tensile strength [UTS], failure strain epsilon(f), strain energy density E) and compositional remodeling (collagen, DNA), and implanted in vivo. For 2-h constructs, stiffness was determined mainly by the Fn and was half as high as that of native heart, whereas UTS, epsilon(f), and E were determined by the Knit and were, respectively, 8-, 7-, and 30-fold higher than native heart. Over 1 week of static in vitro culture, cell-mediated, serum-dependent remodeling was demonstrated by a 5-fold increase in construct collagen content and maintenance of stiffness not observed in cell-free constructs. Cyclic stretch further increased construct collagen content in a manner dependent on loading regimen. The presence of cardiac cells in cultured constructs was demonstrated by immunohistochemistry (troponin I) and Western blot (connexin 43). However, in vitro culture reduced Knit mechanical properties, decreasing UTS, epsilon(f), and E of both constructs and cell-free constructs and motivating in vivo study of the 2-h constructs. Constructs implanted subcutaneously in nude rats for 3 weeks exhibited the continued presence of cardiomyocytes and blood vessel ingrowth by immunostaining for troponin I, connexin 43, and CD-31. Together, the data showed that hybrid cardiac constructs initially exhibited supraphysiologic UTS, epsilon(f), and E, and remodeled in response to serum and stretch in vitro and in an ectopic in vivo model.


Assuntos
Implantes Absorvíveis , Materiais Biocompatíveis/química , Elastômeros/química , Fibrina/química , Miócitos Cardíacos/citologia , Miócitos Cardíacos/fisiologia , Engenharia Tecidual/métodos , Animais , Animais Recém-Nascidos , Materiais Biocompatíveis/análise , Bioprótese , Técnicas de Cultura de Células/métodos , Proliferação de Células , Sobrevivência Celular/fisiologia , Células Cultivadas , Elasticidade , Elastômeros/análise , Teste de Materiais , Neovascularização Fisiológica/fisiologia , Ratos , Ratos Sprague-Dawley , Resistência à Tração/fisiologia , Têxteis , Remodelação Ventricular/fisiologia
13.
In Vitro Cell Dev Biol Anim ; 41(7): 188-96, 2005.
Artigo em Inglês | MEDLINE | ID: mdl-16223333

RESUMO

One approach to the engineering of functional cardiac tissue for basic studies and potential clinical use involves bioreactor cultivation of dissociated cells on a biomaterial scaffold. Our objective was to develop a scaffold that is (1) highly porous with large interconnected pores (to facilitate mass transport), (2) hydrophilic (to enhance cell attachment), (3) structurally stable (to withstand the shearing forces during bioreactor cultivation), (4) degradable (to provide ultimate biocompatibility of the tissue graft), and (5) elastic (to enable transmission of contractile forces). The scaffold of choice was made as a composite of poly(dl-lactide-co-caprolactone), poly(dl-lactide-co-glycolide) (PLGA), and type I collagen, with open interconnected pores and the average void volume of 80 +/- 5%. Neonatal rat heart cells suspended in Matrigel were seeded into the scaffold at a physiologically high density (1.35 x 10(8) cells/cm(3)) and cultivated for 8 d in cartridges perfused with culture medium or in orbitally mixed dishes (25 rpm); collagen sponge (Ultrafoam) and PLGA sponge served as controls. Construct cellularity, presence of cardiac markers, and contractile properties were markedly improved in composite scaffolds as compared with both controls.


Assuntos
Materiais Biocompatíveis , Coração , Miocárdio , Engenharia Tecidual/métodos , Animais , Materiais Biocompatíveis/química , Materiais Biocompatíveis/metabolismo , Técnicas de Cultura de Células , Colágeno Tipo I/metabolismo , Conexina 43/metabolismo , Humanos , Ácido Láctico/química , Ácido Láctico/metabolismo , Teste de Materiais , Miocárdio/citologia , Miocárdio/metabolismo , Ácido Poliglicólico/química , Ácido Poliglicólico/metabolismo , Copolímero de Ácido Poliláctico e Ácido Poliglicólico , Polímeros/química , Polímeros/metabolismo , Porosidade , Ratos , Ratos Sprague-Dawley , Engenharia Tecidual/instrumentação , Troponina I/metabolismo
14.
Physiol Rep ; 3(4)2015 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-25847914

RESUMO

Respiratory viruses invade the upper airway of the lung, triggering a potent immune response that often exacerbates preexisting conditions such as asthma and COPD. Poly(I:C) is a synthetic analog of viral dsRNA that induces the characteristic inflammatory response associated with viral infection, such as loss of epithelial integrity, and increased production of mucus and inflammatory cytokines. Here, we explore the mechanistic responses to poly(I:C) in a well-defined primary normal human bronchial epithelial (NHBE) model that recapitulates in vivo functions and responses. We developed functional and quantifiable methods to evaluate the physiology of our model in both healthy and inflamed states. Through gene and protein expression, we validated the differentiation state and population of essential cell subtypes (i.e., ciliated, goblet, club, and basal cells) as compared to the human lung. Assays for total mucus production, cytokine secretion, and barrier function were used to evaluate in vitro physiology and response to viral insult. Cells were treated apically with poly(I:C) and evaluated 48 h after induction. Results revealed a dose-dependent increase in goblet cell differentiation, as well as, an increase in mucus production relative to controls. There was also a dose-dependent increase in secretion of IL-6, IL-8, TNF-α, and RANTES. Epithelial barrier function, as measured by TEER, was maintained at 1501 ± 355 Ω*cm² postdifferentiation, but dropped significantly when challenged with poly(I:C). This study provides first steps toward a well-characterized model with defined functional methods for understanding dsRNA stimulated inflammatory responses in a physiologically relevant manner.

16.
Adv Mater ; 25(32): 4459-65, 2013 Aug 27.
Artigo em Inglês | MEDLINE | ID: mdl-23765688

RESUMO

Microfabricated elastomeric scaffolds with 3D structural patterns are created by semiautomated layer-by-layer assembly of planar polymer sheets with through-pores. The mesoscale interconnected pore architectures governed by the relative alignment of layers are shown to direct cell and muscle-like fiber orientation in both skeletal and cardiac muscle, enabling scale up of tissue constructs towards clinically relevant dimensions.


Assuntos
Decanoatos/química , Glicerol/análogos & derivados , Mioblastos/citologia , Miocárdio/citologia , Polímeros/química , Engenharia Tecidual/métodos , Alicerces Teciduais/química , Animais , Diferenciação Celular , Linhagem Celular , Elastômeros , Glicerol/química , Camundongos , Microtecnologia , Porosidade , Ratos
17.
Tissue Eng Part A ; 19(5-6): 793-807, 2013 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-23190320

RESUMO

Tissue-engineered constructs, at the interface of material science, biology, engineering, and medicine, have the capacity to improve outcomes for cardiac patients by providing living cells and degradable biomaterials that can regenerate the native myocardium. With an ultimate goal of both delivering cells and providing mechanical support to the healing heart, we designed three-dimensional (3D) elastomeric scaffolds with (1) stiffnesses and anisotropy mimicking explanted myocardial specimens as predicted by finite-element (FE) modeling, (2) systematically varied combinations of rectangular pore pattern, pore aspect ratio, and strut width, and (3) structural features approaching tissue scale. Based on predicted mechanical properties, three scaffold designs were selected from eight candidates for fabrication from poly(glycerol sebacate) by micromolding from silicon wafers. Large 20×20 mm scaffolds with high aspect ratio features (5:1 strut height:strut width) were reproducibly cast, cured, and demolded at a relatively high throughput. Empirically measured mechanical properties demonstrated that scaffolds were cardiac mimetic and validated FE model predictions. Two-layered scaffolds providing fully interconnected pore networks were fabricated by layer-by-layer assembly. C2C12 myoblasts cultured on one-layered scaffolds exhibited specific patterns of cell elongation and interconnectivity that appeared to be guided by the scaffold pore pattern. Neonatal rat heart cells cultured on two-layered scaffolds for 1 week were contractile, both spontaneously and in response to electrical stimulation, and expressed sarcomeric α-actinin, a cardiac biomarker. This work not only demonstrated several scaffold designs that promoted functional assembly of rat heart cells, but also provided the foundation for further computational and empirical investigations of 3D elastomeric scaffolds for cardiac tissue engineering.


Assuntos
Materiais Biomiméticos/farmacologia , Coração/efeitos dos fármacos , Polímeros/farmacologia , Engenharia Tecidual , Alicerces Teciduais/química , Animais , Animais Recém-Nascidos , Anisotropia , Biomarcadores/metabolismo , Fenômenos Biomecânicos/efeitos dos fármacos , Linhagem Celular , Decanoatos/farmacologia , Elastômeros , Análise de Elementos Finitos , Glicerol/análogos & derivados , Glicerol/farmacologia , Coração/fisiologia , Camundongos , Contração Miocárdica/efeitos dos fármacos , Miócitos Cardíacos/citologia , Miócitos Cardíacos/efeitos dos fármacos , Miócitos Cardíacos/metabolismo , Ratos
18.
Biomaterials ; 34(38): 10007-15, 2013 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-24079890

RESUMO

A biodegradable microvessel scaffold comprised of distinct parenchymal and vascular compartments separated by a permeable membrane interface was conceptualized, fabricated, cellularized, and implanted. The device was designed with perfusable microfluidic channels on the order of 100 µm to mimic small blood vessels, and high interfacial area to an adjacent parenchymal space to enable transport between the compartments. Poly(glycerol sebacate) (PGS) elastomer was used to construct the microvessel framework, and various assembly methods were evaluated to ensure robust mechanical integrity. In vitro studies demonstrated the differentiation of human skeletal muscle cells cultured in the parenchymal space, a 90% reduction in muscle cell viability due to trans-membrane transport of a myotoxic drug from the perfusate, and microvessel seeding with human endothelial cells. In vivo studies of scaffolds implanted subcutaneously and intraperitoneally, without or with exogenous cells, into nude rats demonstrated biodegradation of the membrane interface and host blood cell infiltration of the microvessels. This modular, implantable scaffold could serve as a basis for building tissue constructs of increasing scale and clinical relevance.


Assuntos
Decanoatos/química , Glicerol/análogos & derivados , Polímeros/química , Engenharia Tecidual/métodos , Alicerces Teciduais/química , Animais , Sobrevivência Celular/fisiologia , Células Cultivadas , Glicerol/química , Humanos , Microscopia Eletrônica de Varredura , Músculo Esquelético/citologia , Ratos
19.
J Tissue Eng Regen Med ; 5(6): e115-25, 2011 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-21604379

RESUMO

In vitro application of pulsatile electrical stimulation to neonatal rat cardiomyocytes cultured on polymer scaffolds has been shown to improve the functional assembly of cells into contractile engineered cardiac tissues. However, to date, the conditions of electrical stimulation have not been optimized. We have systematically varied the electrode material, amplitude and frequency of stimulation to determine the conditions that are optimal for cardiac tissue engineering. Carbon electrodes, exhibiting the highest charge-injection capacity and producing cardiac tissues with the best structural and contractile properties, were thus used in tissue engineering studies. Engineered cardiac tissues stimulated at 3 V/cm amplitude and 3 Hz frequency had the highest tissue density, the highest concentrations of cardiac troponin-I and connexin-43 and the best-developed contractile behaviour. These findings contribute to defining bioreactor design specifications and electrical stimulation regime for cardiac tissue engineering.


Assuntos
Coração/fisiologia , Engenharia Tecidual/métodos , Animais , Reatores Biológicos , Estimulação Elétrica , Eletrodos , Modelos Biológicos , Miocárdio/ultraestrutura , Ratos , Ratos Sprague-Dawley
20.
Biomaterials ; 32(7): 1856-64, 2011 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-21144580

RESUMO

Multi-layered poly(glycerol-sebacate) (PGS) scaffolds with controlled pore microarchitectures were fabricated, combined with heart cells, and cultured with perfusion to engineer contractile cardiac muscle constructs. First, one-layered (1L) scaffolds with accordion-like honeycomb shaped pores and elastomeric mechanical properties were fabricated by laser microablation of PGS membranes. Second, two-layered (2L) scaffolds with fully interconnected three dimensional pore networks were fabricated by oxygen plasma treatment of 1L scaffolds followed by stacking with off-set laminae to produce a tightly bonded composite. Third, heart cells were cultured on scaffolds with or without interstitial perfusion for 7 days. The laser-microablated PGS scaffolds exhibited ultimate tensile strength and strain-to-failure higher than normal adult rat left ventricular myocardium, and effective stiffnesses ranging from 220 to 290 kPa. The 7-day constructs contracted in response to electrical field stimulation. Excitation thresholds were unaffected by scaffold scale up from 1L to 2L. The 2L constructs exhibited reduced apoptosis, increased expression of connexin-43 (Cx-43) and matrix metalloprotease-2 (MMP-2) genes, and increased Cx-43 and cardiac troponin-I proteins when cultured with perfusion as compared to static controls. Together, these findings suggest that multi-layered, microfabricated PGS scaffolds may be applicable to myocardial repair applications requiring mechanical support, cell delivery and active implant contractility.


Assuntos
Miocárdio/citologia , Alicerces Teciduais/química , Animais , Animais Recém-Nascidos , Células Cultivadas , Eletrofisiologia , Teste de Materiais , Microscopia Eletrônica de Varredura , Contração Miocárdica/fisiologia , Miocárdio/metabolismo , Miocárdio/ultraestrutura , Reação em Cadeia da Polimerase , Ratos , Engenharia Tecidual/métodos
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa