Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 20
Filtrar
1.
J Transl Med ; 19(1): 250, 2021 06 07.
Artigo em Inglês | MEDLINE | ID: mdl-34098982

RESUMO

BACKGROUND: Inflammatory bowel disease (IBD) is a chronic and idiopathic inflammatory disorder of the gastrointestinal tract and comprises ulcerative colitis (UC) and Crohn's disease (CD). Crohn's disease can affect any part of the gastrointestinal tract, but mainly the terminal ileum and colon. In the present study, we aimed to characterize terminal-ileal CD (ICD) and colonic CD (CCD) at the molecular level, which might enable a more optimized approach for the clinical care and scientific research of CD. METHODS: We analyzed differentially expressed genes in samples from 23 treatment-naïve paediatric patients with CD and 25 non-IBD controls, and compared the data with previously published RNA-Seq data using multi-statistical tests and confidence intervals. We implemented functional profiling and proposed statistical methods for feature selection using a logistic regression model to identify genes that are highly associated in ICD or CCD. We also validated our final candidate genes in independent paediatric and adult cohorts. RESULTS: We identified 550 genes specifically expressed in patients with CD compared with those in healthy controls (p < 0.05). Among these DEGs, 240 from patients with CCD were mainly involved in mitochondrial dysfunction, whereas 310 from patients with ICD were enriched in the ileum functions such as digestion, absorption, and metabolism. To choose the most effective gene set, we selected the most powerful genes (p-value ≤ 0.05, accuracy ≥ 0.8, and AUC ≥ 0.8) using logistic regression. Consequently, 33 genes were identified as useful for discriminating CD location; the accuracy and AUC were 0.86 and 0.83, respectively. We then validated the 33 genes with data from another independent paediatric cohort (accuracy = 0.93, AUC = 0.92) and adult cohort (accuracy = 0.88, AUC = 0.72). CONCLUSIONS: In summary, we identified DEGs that are specifically expressed in CCD and ICD compared with those in healthy controls and patients with UC. Based on the feature selection analysis, 33 genes were identified as useful for discriminating CCD and ICD with high accuracy and AUC, for not only paediatric patients but also independent cohorts. We propose that our approach and the final gene set are useful for the molecular classification of patients with CD, and it could be beneficial in treatments based on disease location.


Assuntos
Colite Ulcerativa , Doença de Crohn , Adulto , Criança , Doença de Crohn/genética , Humanos , Íleo , Modelos Logísticos , Transcriptoma/genética
2.
Mol Biol Rep ; 47(10): 8317-8324, 2020 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-32981011

RESUMO

Sexual size dimorphism (SSD) is a widespread phenomenon in fish species, including in the olive flounder. Although it is well established that female olive flounders acquire more bone mass than males, the underlying mechanism and timing of this SSD remains controversial. Here, the gene expression profiles of adult male and female olive flounder fish were explored to better understand the SSD mechanisms. Using RNA sequencing, a total of 4784 sex-biased differentially expressed genes (DEGs) in the fin with asymptotic growth after maturity were identified, among which growth-related factors were found. Gene ontology and pathway enrichment studies were performed to predict potential SSD-related genes and their functions. According to functional analysis, negative regulation of cell proliferation was significantly enriched in males, and anabolism related genes were highly expressed in females. In addition, pathway analysis using the Kyoto Encyclopedia of Genes and Genomes database revealed that five sexual dimorphism-related candidate genes (bambia, smurf1, dvl2, cul1a, and dvl3) were enriched in osteogenesis-contributing pathways. These results suggest that these five candidate genes may be relevant for skeletal development in olive flounders. Altogether, this study adds new knowledge for a better understanding of SSD-related growth traits in olive flounder, which can be used for enhancing aquaculture productivity with reduced production costs.


Assuntos
Tamanho Corporal/genética , Proteínas de Peixes , Linguado , Regulação da Expressão Gênica , Caracteres Sexuais , Transcriptoma , Animais , Feminino , Proteínas de Peixes/biossíntese , Proteínas de Peixes/genética , Linguado/genética , Linguado/metabolismo , Masculino
3.
Genomics ; 111(2): 159-166, 2019 03.
Artigo em Inglês | MEDLINE | ID: mdl-29366860

RESUMO

Non-coding RNA is no longer considered to be "junk" DNA, based on evidence uncovered in recent decades. In particular, the important role played by natural antisense transcripts (NATs) in regulating the expression of genes is receiving increasing attention. However, the regulatory mechanisms of NATs remain incompletely understood. It is well-known that the insertion of transposable elements (TEs) can affect gene transcription. Using a bioinformatics approach, we identified NATs using human mRNA sequences from the UCSC Genome Browser Database. Our in silico analysis identified 1079 NATs and 700 sense-antisense gene pairs. We identified 179 NATs that showed evidence of having been affected by TEs during cellular gene expression. These findings may provide an understanding of the complex regulation mechanisms of NATs. If our understanding of NATs as modulators of gene expression is further enhanced, we can develop ways to control gene expression.


Assuntos
Elementos de DNA Transponíveis/genética , RNA Antissenso/genética , RNA Mensageiro/genética , Biologia Computacional , Humanos , RNA Antissenso/metabolismo , RNA Mensageiro/metabolismo
4.
ScientificWorldJournal ; 2018: 6218430, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-29686587

RESUMO

Sophorae Radix (Sophora flavescens Aiton) has long been used in traditional medicine in East Asia due to the various biological activities of its secondary metabolites. Endogenous contents of phenolic compounds (phenolic acid, flavonol, and isoflavone) and the main bioactive compounds of Sophorae Radix were analyzed based on the qualitative HPLC analysis and evaluated in different organs and at different developmental stages. In total, 11 compounds were detected, and the composition of the roots and aerial parts (leaves, stems, and flowers) was significantly different. trans-Cinnamic acid and p-coumaric acid were observed only in the aerial parts. Large amounts of rutin and maackiain were detected in the roots. Four phenolic acid compounds (benzoic acid, caffeic acid, ferulic acid, and chlorogenic acid) and four flavonol compounds (kaempferol, catechin hydrate, epicatechin, and rutin) were higher in aerial parts than in roots. To identify putative genes involved in phenolic compounds biosynthesis, a total of 41 transcripts were investigated. Expression patterns of these selected genes, as well as the multiple isoforms for the genes, varied by organ and developmental stage, implying that they are involved in the biosynthesis of various phenolic compounds both spatially and temporally.


Assuntos
Genes de Plantas , Fenóis/metabolismo , Sophora/genética , Sophora/metabolismo , Vias Biossintéticas/genética , Cromatografia Líquida de Alta Pressão , Perfilação da Expressão Gênica , Regulação da Expressão Gênica de Plantas , Especificidade de Órgãos/genética , Fenóis/química , Compostos Fitoquímicos/química , Extratos Vegetais , Sophora/química , Transcriptoma
5.
Antonie Van Leeuwenhoek ; 110(1): 145-152, 2017 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-28012139

RESUMO

Vibrio species are well known as motile, mostly oxidase-positive, facultative anaerobic Gram-negative bacteria. They are abundant in aquatic environments and are a common cause of human infections including diarrhea, soft tissue diseases, and bacteremia. Here, two Gram-negative bacteria, designated M12-1144T and M12-1181, were isolated from human clinical specimens and identified using a polyphasic taxonomic approach. Phylogenetic study based on 16S rRNA gene sequence analysis revealed that the isolates belong to the genus Vibrio, and are closely related to Vibrio metschnikovii KCTC 32284T (98.3%) and Vibrio cincinnatiensis KCTC 2733T (97.8%). The major fatty acids were summed feature 3 (C16:1 ω7c/C16:1 ω6c, 38.0%), C16:0 (23.0%), and summed feature 8 (C18:1 ω7c or C18:1 ω6c, 19.3%) and major polar lipids were diphosphatidylglycerol, phosphatidylglycerol, and phosphatidylethanolamine. The G + C content of the genomic DNA was determined to be 44.1 mol%. DNA-DNA relatedness between the two newly isolated strains and V. metschnikovii KCTC 32284T and V. cincinnatiensis KCTC 2733T was between 42.6 to 47.5%. The similarities of genome-to-genome distance between M12-1144T and related species ranged from 18.4-54.8%. Based on these results, a new species of the genus Vibrio, Vibrio injenensis is proposed. The type strain is M12-1144 T(=KCTC 32233T =JCM 30011T).


Assuntos
Vibrioses/microbiologia , Vibrio/isolamento & purificação , Técnicas de Tipagem Bacteriana , Composição de Bases , DNA Bacteriano/genética , DNA Ribossômico/genética , Ácidos Graxos/química , Ácidos Graxos/metabolismo , Humanos , Filogenia , RNA Ribossômico 16S/genética , Vibrio/classificação , Vibrio/metabolismo
7.
Life Sci ; 314: 121195, 2023 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-36436619

RESUMO

AIMS: The timely diagnosis of different stages in NAFLD is crucial for disease treatment and reversal. We used hepatocellular ballooning to determine different NAFLD stages. MAIN METHODS: We analyzed differentially expressed genes (DEGs) in 78 patients with NAFLD and in healthy controls from previously published RNA-seq data. We identified two expression types in NAFLD progression, calculated the predictive power of candidate genes, and validated them in an independent cohort. We also performed cancer studies with these candidates retrieved from the Cancer Genome Atlas. KEY FINDINGS: We identified 103 DEGs in NAFLD patients compared to healthy controls: 75 genes gradually increased or decreased in the NAFLD stage, whereas 28 genes showed differences only in NASH. The former were enriched in negative regulation and binding-related genes; the latter were involved in positive regulation and cell proliferation. Feature selection showed the gradual up- or down-regulation of 21 genes in NASH compared to controls; 18 were highly expressed only in NASH. Using deep-learning method with subset of features from lasso regression, we obtained reliable determination performance in NAFL and NASH (accuracy: 0.857) and validated these genes using an independent cohort (accuracy: 0.805). From cancer studies, we identified significant differential expression of several candidate genes in LIHC; 5 genes were gradually up-regulated and 6 showing high expression only in NASH were influential to patient survival. SIGNIFICANCE: The identified biomolecular signatures may determine the spectrum of NAFLD and its relationship with HCC, improving clinical diagnosis and prognosis and enabling a therapeutic intervention for NAFLD.


Assuntos
Carcinoma Hepatocelular , Aprendizado Profundo , Neoplasias Hepáticas , Hepatopatia Gordurosa não Alcoólica , Humanos , Hepatopatia Gordurosa não Alcoólica/metabolismo , Carcinoma Hepatocelular/genética , Neoplasias Hepáticas/genética , Fígado/metabolismo
8.
Funct Integr Genomics ; 12(1): 45-61, 2012 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-22231539

RESUMO

Recently, conjoined genes (CGs) have emerged as important genetic factors necessary for understanding the human genome. However, their formation mechanism and precise structures have remained mysterious. Based on a detailed structural analysis of 57 human CG transcript variants (CGTVs, discovered in this study) and all (833) known CGs in the human genome, we discovered that the poly(A) signal site from the upstream parent gene region is completely removed via the skipping or truncation of the final exon; consequently, CG transcription is terminated at the poly(A) signal site of the downstream parent gene. This result led us to propose a novel mechanism of CG formation: the complete removal of the poly(A) signal site from the upstream parent gene is a prerequisite for the CG transcriptional machinery to continue transcribing uninterrupted into the intergenic region and downstream parent gene. The removal of the poly(A) signal sequence from the upstream gene region appears to be caused by a deletion or truncation mutation in the human genome rather than post-transcriptional trans-splicing events. With respect to the characteristics of CG sequence structures, we found that intergenic regions are hot spots for novel exon creation during CGTV formation and that exons farther from the intergenic regions are more highly conserved in the CGTVs. Interestingly, many novel exons newly created within the intergenic and intragenic regions originated from transposable element sequences. Additionally, the CGTVs showed tumor tissue-biased expression. In conclusion, our study provides novel insights into the CG formation mechanism and expands the present concepts of the genetic structural landscape, gene regulation, and gene formation mechanisms in the human genome.


Assuntos
Éxons , Genoma Humano , Mutagênese , Proteínas Mutantes Quiméricas/genética , Regiões 3' não Traduzidas , Processamento Alternativo , Sequência de Bases , Clonagem Molecular , Células HEK293 , Humanos , Proteínas Mutantes Quiméricas/metabolismo , Neoplasias/metabolismo , Poliadenilação , RNA Mensageiro/genética , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Deleção de Sequência , Transcrição Gênica
9.
Mol Med Rep ; 25(3)2022 03.
Artigo em Inglês | MEDLINE | ID: mdl-35029293

RESUMO

Particulate matter (PM) can be categorized by particle size (PM10, PM2.5 and PM1.0), which is an important factor affecting the biological response. Exposure to PM in the air (dust, smoke, dirt and biological contaminants) is clearly associated with lung disease (lung cancer, pneumonia and asthma). Although PM primarily affects lung epithelial cells, the specific response of related cell types to PM remains to be elucidated. The present study performed Gene Ontology (GO) analysis programs (Clustering GO and Database for Annotation, Visualization and Integrated Discovery) on differentially expressed genes in lung epithelial cells (WI­38 VA­13) and fibroblasts (WI­38) following treatment with PM10 and evaluated the cell­specific biological responses related to cell proliferation, apoptosis, adhesion and extracellular matrix production. The results suggested that short­ or long­term exposure to PM may affect cell condition and may consequently be related to several human diseases, including lung cancer and cardiopulmonary disease.


Assuntos
Células Epiteliais Alveolares/efeitos dos fármacos , Células Epiteliais Alveolares/metabolismo , Fibroblastos/efeitos dos fármacos , Fibroblastos/metabolismo , Perfilação da Expressão Gênica , Material Particulado/efeitos adversos , Transcriptoma , Poluentes Atmosféricos , Poluição do Ar , Adesão Celular , Linhagem Celular , Matriz Extracelular/metabolismo , Sequenciamento de Nucleotídeos em Larga Escala , Humanos , Pulmão , RNA-Seq
10.
ISME J ; 16(5): 1205-1221, 2022 05.
Artigo em Inglês | MEDLINE | ID: mdl-34972816

RESUMO

The human microbiome plays an essential role in the human immune system, food digestion, and protection from harmful bacteria by colonizing the human intestine. Recently, although the human microbiome affects colorectal cancer (CRC) treatment, the mode of action between the microbiome and CRC remains unclear. This study showed that propionate suppressed CRC growth by promoting the proteasomal degradation of euchromatic histone-lysine N-methyltransferase 2 (EHMT2) through HECT domain E3 ubiquitin protein ligase 2 (HECTD2) upregulation. In addition, EHMT2 downregulation reduced the H3K9me2 level on the promoter region of tumor necrosis factor α-induced protein 1 (TNFAIP1) as a novel direct target of EHMT2. Subsequently, TNFAIP1 upregulation induced the apoptosis of CRC cells. Furthermore, using Bacteroides thetaiotaomicron culture medium, we confirmed EHMT2 downregulation via upregulation of HECTD2 and TNFAIP1 upregulation. Finally, we observed the synergistic effect of propionate and an EHMT2 inhibitor (BIX01294) in 3D spheroid culture models. Thus, we suggest the anticancer effects of propionate and EHMT2 as therapeutic targets for colon cancer treatment and may provide the possibility for the synergistic effects of an EHMT2 inhibitor and microbiome in CRC treatment.


Assuntos
Neoplasias Colorretais , Microbiota , Ubiquitina-Proteína Ligases/metabolismo , Antígenos de Histocompatibilidade/metabolismo , Histona-Lisina N-Metiltransferase/genética , Histona-Lisina N-Metiltransferase/metabolismo , Humanos , Propionatos , Regulação para Cima
11.
Funct Integr Genomics ; 11(3): 507-17, 2011 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-21484476

RESUMO

A comprehensive analysis of transcriptional structures of chimpanzee sperm development-associated genes is of significant interest for deeply understanding sperm development and male reproductive process. In this study, we sequenced 7,680 clones from a chimpanzee testis full-length cDNA library and obtained 1,933 nonredundant high-quality full-length cDNA sequences. Comparative analysis between human and chimpanzee showed that 78 sperm development-associated genes, most of which were yet uncharacterized, had undergone severe structural changes (mutations at the start/stop codons, INDELs, alternative splicing variations and fusion forms) on genomic and transcript levels throughout chimpanzee evolution. Specifically, among the 78 sperm development-associated genes, 39 including ODF2, UBC, and CD59 showed markedly chimpanzee-specific structural changes. Through dN/dS analysis, we found that 56 transcripts (including seven sperm development-associated genes) had values of greater than one when comparing human and chimpanzee DNA sequences, whereas the values were less than one when comparing humans and orangutans. Gene ontology annotation and expression profiling showed that the chimpanzee testis transcriptome was enriched with genes that are associated with chimpanzee male germ cell development. Taken together, our study provides the first comprehensive molecular evidence that many chimpanzee sperm development-associated genes had experienced severe structural changes over the course of evolution on genomic and transcript levels.


Assuntos
Regulação da Expressão Gênica no Desenvolvimento , Pan troglodytes/genética , Espermatozoides/fisiologia , Processamento Alternativo , Sequência de Aminoácidos , Animais , Fertilização/genética , Perfilação da Expressão Gênica , Loci Gênicos , Estruturas Genéticas , Humanos , Mutação INDEL , Masculino , Dados de Sequência Molecular , RNA Mensageiro/genética , Capacitação Espermática/genética , Motilidade dos Espermatozoides/genética , Espermatogênese/genética , Testículo/fisiologia
12.
Mol Oncol ; 15(11): 2989-3002, 2021 11.
Artigo em Inglês | MEDLINE | ID: mdl-34214254

RESUMO

Dozens of histone methyltransferases have been identified and biochemically characterized, but the pathological roles of their dysfunction in human diseases such as cancer remain largely unclear. Here, we demonstrate the involvement of EHMT1, a histone lysine methyltransferase, in lung cancer. Immunohistochemical analysis indicated that the expression levels of EHMT1 are significantly elevated in human lung carcinomas compared with non-neoplastic lung tissues. Through gene ontology analysis of RNA-seq results, we showed that EHMT1 is clearly associated with apoptosis and the cell cycle process. Moreover, FACS analysis and cell growth assays showed that knockdown of EHMT1 induced apoptosis and G1 cell cycle arrest via upregulation of CDKN1A in A549 and H1299 cell lines. Finally, in 3D spheroid culture, compared to control cells, EHMT1 knockdown cells exhibited reduced aggregation of 3D spheroids and clear upregulation of CDKN1A and downregulation of E-cadherin. Therefore, the results of the present study suggest that EHMT1 plays a critical role in the regulation of cancer cell apoptosis and the cell cycle by modulating CDKN1A expression. Further functional analyses of EHMT1 in the context of human tumorigenesis may aid in the development of novel therapeutic strategies for cancer.


Assuntos
Neoplasias Pulmonares , Apoptose/genética , Ciclo Celular , Pontos de Checagem do Ciclo Celular/genética , Linhagem Celular Tumoral , Proliferação de Células/genética , Inibidor de Quinase Dependente de Ciclina p21/genética , Inibidor de Quinase Dependente de Ciclina p21/metabolismo , Regulação Neoplásica da Expressão Gênica , Histona-Lisina N-Metiltransferase/genética , Histona-Lisina N-Metiltransferase/metabolismo , Humanos , Pulmão/patologia , Neoplasias Pulmonares/genética , Neoplasias Pulmonares/patologia
13.
Sci Adv ; 7(23)2021 06.
Artigo em Inglês | MEDLINE | ID: mdl-34078609

RESUMO

Advanced technologies are required for generating human intestinal epithelial cells (hIECs) harboring cellular diversity and functionalities to predict oral drug absorption in humans and study normal intestinal epithelial physiology. We developed a reproducible two-step protocol to induce human pluripotent stem cells to differentiate into highly expandable hIEC progenitors and a functional hIEC monolayer exhibiting intestinal molecular features, cell type diversity, and high activities of intestinal transporters and metabolic enzymes such as cytochrome P450 3A4 (CYP3A4). Functional hIECs are more suitable for predicting compounds metabolized by CYP3A4 and absorbed in the intestine than Caco-2 cells. This system is a step toward the transition from three-dimensional (3D) intestinal organoids to 2D hIEC monolayers without compromising cellular diversity and function. A physiologically relevant hIEC model offers a novel platform for creating patient-specific assays and support translational applications, thereby bridging the gap between 3D and 2D culture models of the intestine.


Assuntos
Citocromo P-450 CYP3A , Mucosa Intestinal , Células CACO-2 , Citocromo P-450 CYP3A/metabolismo , Células Epiteliais/metabolismo , Humanos , Mucosa Intestinal/metabolismo , Organoides/metabolismo
14.
Nat Commun ; 12(1): 4492, 2021 07 23.
Artigo em Inglês | MEDLINE | ID: mdl-34301945

RESUMO

Human pluripotent stem cell (hPSC)-derived organoids and cells have similar characteristics to human organs and tissues. Thus, in vitro human organoids and cells serve as a superior alternative to conventional cell lines and animal models in drug development and regenerative medicine. For a simple and reproducible analysis of the quality of organoids and cells to compensate for the shortcomings of existing experimental validation studies, a quantitative evaluation method should be developed. Here, using the GTEx database, we construct a quantitative calculation system to assess similarity to the human organs. To evaluate our system, we generate hPSC-derived organoids and cells, and detected organ similarity. To facilitate the access of our system by researchers, we develop a web-based user interface presenting similarity to the appropriate organs as percentages. Thus, this program could provide valuable information for the generation of high-quality organoids and cells and a strategy to guide proper lineage-oriented differentiation.


Assuntos
Algoritmos , Diferenciação Celular/genética , Especificidade de Órgãos/genética , Organoides/metabolismo , Células-Tronco Pluripotentes/metabolismo , Transcriptoma/genética , Técnicas de Cultura de Células/métodos , Linhagem Celular , Perfilação da Expressão Gênica/métodos , Humanos , Organoides/citologia , Células-Tronco Pluripotentes/citologia , RNA-Seq/métodos , Reação em Cadeia da Polimerase Via Transcriptase Reversa
15.
Comput Struct Biotechnol J ; 18: 2639-2646, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-33033583

RESUMO

Papillary renal cell carcinoma (pRCC), which accounts for 10-15% of renal cell carcinomas, is the second most frequent renal cell carcinoma. pRCC patient classification is difficult because of disease heterogeneity, histologic subtypes, and variations in both disease progression and patient outcomes. Nevertheless, symptom-based patient classification is indispensable in deciding treatment options. Here we introduce a prediction method for distinguishing pRCC pathological tumour stages using deep learning and similarity-based hierarchical clustering approaches. Differentially expressed genes (DEGs) were identified from gene expression data of pRCC patients retrieved from TCGA. Thirty-three of these genes were distinguished based on expression in early or late stage pRCC using the Wilcoxon rank sum test, confidence interval, and LASSO regression. Then, a deep learning model was constructed to predict tumour progression with an accuracy of 0.942 and area under curve of 0.933. Furthermore, pathological sub-stage information with an accuracy of 0.857 was obtained via similarity-based hierarchical clustering using 18 DEGs between stages I and II, and 11 DEGs between stages III and IV, identified through Wilcoxon rank sum test and quantile approach. Additionally, we offer this classification process as an R function. This is the first report of a model distinguishing the pathological tumour stages of pRCC using deep learning and similarity-based hierarchical clustering methods. Our findings are potentially applicable for improving early detection and treatment of pRCC and establishing a clearer classification of the pathological stages in other tumours.

16.
Theranostics ; 10(11): 5048-5063, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32308767

RESUMO

Several phase 1/2 clinical trials showed that low-dose interleukin-2 (IL-2) treatment is a safe and effective strategy for the treatment of chronic graft-versus-host disease, hepatitis C virus-induced vasculitis, and type 1 diabetes. Ulcerative colitis (UC) is a chronic inflammatory condition of the colon that lacks satisfactory treatment. In this study, we aimed to determine the effects of low-dose IL-2 as a therapeutic for UC on dextran sulfate sodium (DSS)-induced colitis. Methods: Mice with DSS-induced colitis were intraperitoneally injected with low-dose IL-2. Survival, body weight, disease activity index, colon length, histopathological score, myeloperoxidase activity and inflammatory cytokine levels as well as intestinal barrier integrity were examined. Differential gene expression after low-dose IL-2 treatment was analyzed by RNA-sequencing. Results: Low-dose IL-2 significantly improved the symptoms of DSS-induced colitis in mice and attenuated pro-inflammatory cytokine production and immune cell infiltration. The most effective dose range of IL-2 was 16K-32K IU/day. Importantly, low-dose IL-2 was effective in ameliorating the disruption of epithelial barrier integrity in DSS-induced colitis tissues by restoring tight junction proteins and mucin production and suppressing apoptosis. The colon tissue of DSS-induced mice exposed to low-dose IL-2 mimic gene expression patterns in the colons of control mice. Furthermore, we identified the crucial role of the PI3K-AKT pathway in exerting the therapeutic effect of low-dose IL-2. Conclusions: The results of our study suggest that low-dose IL-2 has therapeutic effects on DSS-induced colitis and potential clinical value in treating UC.


Assuntos
Colite/tratamento farmacológico , Sulfato de Dextrana/toxicidade , Inflamação/prevenção & controle , Interleucina-2/farmacologia , Mucosa Intestinal/efeitos dos fármacos , Fosfatidilinositol 3-Quinases/química , Proteínas Proto-Oncogênicas c-akt/antagonistas & inibidores , Animais , Antineoplásicos/farmacologia , Colite/induzido quimicamente , Colite/metabolismo , Colite/patologia , Modelos Animais de Doenças , Regulação Neoplásica da Expressão Gênica , Inflamação/etiologia , Inflamação/metabolismo , Inflamação/patologia , Mucosa Intestinal/metabolismo , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Fosfatidilinositol 3-Quinases/metabolismo , Proteínas Proto-Oncogênicas c-akt/metabolismo
17.
PLoS One ; 12(9): e0185514, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-28957403

RESUMO

Whole-exome sequencing (WES) can identify causative mutations in hereditary diseases. However, WES data might have a large candidate variant list, including false positives. Moreover, in families, it is more difficult to select disease-associated variants because many variants are shared among members. To reduce false positives and extract accurate candidates, we used a multilocus variant instead of a single-locus variant (SNV). We set up a specific window to analyze the multilocus variant and devised a sliding-window approach to observe all variants. We developed the gene selection tool (GST) based on proportion tests for linkage analysis using WES data. This tool is R program coded and has high sensitivity. We tested our code to find the gene for hereditary spastic paraplegia using SNVs from a specific family and identified the gene known to cause the disease in a significant gene list. The list identified other genes that might be associated with the disease.


Assuntos
Exoma/genética , Doenças Genéticas Inatas/genética , Análise de Sequência de DNA/métodos , Software , Cromossomos Humanos X/genética , Cromossomos Humanos Y/genética , Simulação por Computador , Feminino , Humanos , Masculino , Linhagem
18.
Oncotarget ; 6(27): 23837-44, 2015 Sep 15.
Artigo em Inglês | MEDLINE | ID: mdl-26125227

RESUMO

TALE-nuclease chimeras (TALENs) can bind to and cleave specific genomic loci and, are used to engineer gene knockouts and additions. Recently, instead of using the FokI domain, epigenetically active domains, such as TET1 and LSD1, have been combined with TAL effector domains to regulate targeted gene expression via DNA and histone demethylation. However, studies of histone methylation in the TALE system have not been performed. Therefore, in this study, we established a novel targeted regulation system with a TAL effector domain and a histone methylation domain. To construct a TALE-methylation fusion protein, we combined a TAL effector domain containing an E-Box region to act as a Snail binding site and the SET domain of EHMT 2 to allow for histone methylation. The constructed TALE-SET module (TSET) repressed the expression of E-cadherin via by increasing H3K9 dimethylation. Moreover, the cells that overexpressed TSET showed increased cell migration and invasion. This is the first phenotype-based study of targeted histone methylation by the TALE module, and this new system can be applied in new cancer therapies to reduce side effects.


Assuntos
Caderinas/metabolismo , Metilação de DNA/genética , Chaperonas de Histonas/genética , Proteínas de Homeodomínio/genética , Neoplasias/genética , Proteínas Repressoras/genética , Fatores de Transcrição/genética , Sítios de Ligação/genética , Linhagem Celular Tumoral , Movimento Celular/genética , Proteínas de Ligação a DNA/genética , Transição Epitelial-Mesenquimal/genética , Células HCT116 , Células HeLa , Histonas/metabolismo , Humanos , Invasividade Neoplásica/genética , Estrutura Terciária de Proteína , Proteínas Recombinantes de Fusão/genética , Cicatrização
19.
DNA Res ; 19(3): 275-87, 2012 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-22474061

RESUMO

Although pioneering sequencing projects have shed light on the boxer and poodle genomes, a number of challenges need to be met before the sequencing and annotation of the dog genome can be considered complete. Here, we present the DNA sequence of the Jindo dog genome, sequenced to 45-fold average coverage using Illumina massively parallel sequencing technology. A comparison of the sequence to the reference boxer genome led to the identification of 4 675 437 single nucleotide polymorphisms (SNPs, including 3 346 058 novel SNPs), 71 642 indels and 8131 structural variations. Of these, 339 non-synonymous SNPs and 3 indels are located within coding sequences (CDS). In particular, 3 non-synonymous SNPs and a 26-bp deletion occur in the TCOF1 locus, implying that the difference observed in cranial facial morphology between Jindo and boxer dogs might be influenced by those variations. Through the annotation of the Jindo olfactory receptor gene family, we found 2 unique olfactory receptor genes and 236 olfactory receptor genes harbouring non-synonymous homozygous SNPs that are likely to affect smelling capability. In addition, we determined the DNA sequence of the Jindo dog mitochondrial genome and identified Jindo dog-specific mtDNA genotypes. This Jindo genome data upgrade our understanding of dog genomic architecture and will be a very valuable resource for investigating not only dog genetics and genomics but also human and dog disease genetics and comparative genomics.


Assuntos
DNA Mitocondrial/genética , Cães/genética , Genoma Mitocondrial/genética , Genômica/métodos , Sequenciamento de Nucleotídeos em Larga Escala/métodos , Análise de Sequência de DNA/métodos , Animais , Doenças do Cão/genética , Genótipo , Humanos , Mutação INDEL/genética , Anotação de Sequência Molecular/métodos , Proteínas Nucleares/genética , Polimorfismo de Nucleotídeo Único/genética , República da Coreia , Alinhamento de Sequência/métodos
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa