Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 64
Filtrar
1.
Hepatology ; 76(4): 1135-1149, 2022 10.
Artigo em Inglês | MEDLINE | ID: mdl-35218234

RESUMO

BACKGROUND AND AIMS: Growing evidence suggests an important role of B cells in the development of NAFLD. However, a detailed functional analysis of B cell subsets in NAFLD pathogenesis is lacking. APPROACH AND RESULTS: In wild-type mice, 21 weeks of high fat diet (HFD) feeding resulted in NAFLD with massive macrovesicular steatosis, modest hepatic and adipose tissue inflammation, insulin resistance, and incipient fibrosis. Remarkably, Bnull (JHT) mice were partially protected whereas B cell harboring but antibody-deficient IgMi mice were completely protected from the development of hepatic steatosis, inflammation, and fibrosis. The common feature of JHT and IgMi mice is that they do not secrete antibodies, whereas HFD feeding in wild-type mice led to increased levels of serum IgG2c. Whereas JHT mice have no B cells at all, regulatory B cells were found in the liver of both wild-type and IgMi mice. HFD reduced the number of regulatory B cells and IL-10 production in the liver of wild-type mice, whereas these increased in IgMi mice. Livers of patients with advanced liver fibrosis showed abundant deposition of IgG and stromal B cells and low numbers of IL-10 expressing cells, compatible with our experimental data. CONCLUSIONS: B lymphocytes have both detrimental and protective effects in HFD-induced NAFLD. The lack of secreted pathogenic antibodies protects partially from NAFLD, whereas the presence of certain B cell subsets provides additional protection. IL-10-producing regulatory B cells may represent such a protective B cell subset.


Assuntos
Resistência à Insulina , Hepatopatia Gordurosa não Alcoólica , Animais , Linfócitos B , Dieta Hiperlipídica/efeitos adversos , Modelos Animais de Doenças , Fibrose , Imunoglobulina G , Inflamação/patologia , Resistência à Insulina/fisiologia , Interleucina-10 , Fígado/patologia , Camundongos , Camundongos Endogâmicos C57BL , Hepatopatia Gordurosa não Alcoólica/etiologia , Hepatopatia Gordurosa não Alcoólica/patologia
2.
Analyst ; 143(1): 332-338, 2017 Dec 18.
Artigo em Inglês | MEDLINE | ID: mdl-29210381

RESUMO

We demonstrate simple and rapid bacterial detection using a nuclease-responsive DNA probe. The probe consisting of a fluorescent dye and a quencher at the 5' and 3' termini, respectively, was designed to be cleaved by nucleases such as endonucleases, exonucleases, and DNases, which are released from bacteria using an optimized lysis buffer. The fluorescence signal of the cleaved DNA probe correlates with the number of Gram-negative Escherichia coli and Gram-positive Staphylococcus aureus, and the detection limit was 103 CFU for E. coli and 104 CFU for S. aureus. Moreover, this method is specific for live bacteria and takes just one minute to get the signal including sample collection. These features make the present bacterial detection method a powerful on-site bacterial contamination assay which is simple, rapid, and quantitative.


Assuntos
Sondas de DNA , Escherichia coli/isolamento & purificação , Staphylococcus aureus/isolamento & purificação , Fômites/microbiologia
3.
Biol Pharm Bull ; 40(5): 576-582, 2017 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-28163294

RESUMO

The homeostasis of muscle properties depends on both physical and metabolic stresses. Whereas physical stress entails metabolic response for muscle homeostasis, the latter does not necessarily involve the former and may thus solely affect the homeostasis. We here report that metabolic suppression by the hypometabolic agent 3-iodothyronamine (T1AM) induced muscle cell atrophy without physical stress. We observed that the oxygen consumption rate of C2C12 myotubes decreased 40% upon treatment with 75 µM T1AM for 6 h versus 10% in the vehicle (dimethyl sulfoxide) control. The T1AM treatment reduced cell diameter of myotubes by 15% compared to the control (p<0.05). The cell diameter was reversed completely by 9 h after T1AM was removed. The T1AM treatment also significantly suppressed the expression levels of heat shock protein 72 and αB-crystallin as well as the phosphorylation levels of Akt1, mammalian target of rapamycin (mTOR), S6K, forkhead box O1 (FoxO1) and FoxO3. In contrast, the levels of ubiquitin E3 ligase MuRF1 and chymotrypsin-like activity of proteasome were significantly elevated by T1AM treatment. These results suggest that T1AM-mediated metabolic suppression induced muscle cell atrophy via activation of catabolic signaling and inhibition of anabolic signaling.


Assuntos
Proteína Forkhead Box O1/fisiologia , Atrofia Muscular/induzido quimicamente , Complexo de Endopeptidases do Proteassoma/fisiologia , Proteínas Proto-Oncogênicas c-akt/fisiologia , Proteínas Quinases S6 Ribossômicas/fisiologia , Transdução de Sinais/fisiologia , Tironinas/farmacologia , Animais , Células Cultivadas , Regulação para Baixo , Camundongos , Fibras Musculares Esqueléticas , Serina-Treonina Quinases TOR/fisiologia
4.
J Immunol ; 188(5): 2276-84, 2012 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-22279106

RESUMO

Stage-specific rearrangement of Ig H and L chain genes poses an enigma because both processes use the same recombinatorial machinery, but the H chain locus is accessible at the pro-B cell stage, whereas the L chain loci become accessible at the pre-B cell stage. Transcription factor STAT5 is a positive-acting factor for rearrangement of distal V(H) genes, but attenuation of IL-7 signaling and loss of activated STAT5 at the pre-B cell stage corresponds with Igκ locus accessibility and rearrangement, suggesting that STAT5 plays an inhibitory role at this locus. Indeed, loss of IL-7 signaling correlates with increased activity at the Igκ intron enhancer. However, the κE3' enhancer must also be regulated as this enhancer plays a role in Igκ rearrangement. We show in this study that STAT5 can repress κE3' enhancer activity. We find that STAT5 binds to a site that overlaps the κE3' PU.1 binding site. We observed reciprocal binding by STAT5 and PU.1 to the κE3' enhancer in primary bone marrow cells, STAT5 and PU.1 retrovirally transduced pro-B cell lines, or embryonic stem cells induced to differentiate into B lineage cells. Binding by STAT5 corresponded with low occupancy of other enhancer binding proteins, whereas PU.1 binding corresponded with recruitment of IRF4 and E2A to the κE3' enhancer. We also find that IRF4 expression can override the repressive activity of STAT5. We propose a novel PU.1/STAT5 displacement model during B cell development, and this, coupled with increased IRF4 and E2A activity, regulates κE3' enhancer function.


Assuntos
Diferenciação Celular/imunologia , Proteínas de Ligação a DNA/fisiologia , Elementos Facilitadores Genéticos/imunologia , Cadeias kappa de Imunoglobulina/genética , Proteínas Proto-Oncogênicas/genética , Proteínas Proto-Oncogênicas/metabolismo , Fator de Transcrição STAT5/genética , Fator de Transcrição STAT5/metabolismo , Transativadores/genética , Transativadores/metabolismo , Animais , Subpopulações de Linfócitos B/citologia , Subpopulações de Linfócitos B/imunologia , Subpopulações de Linfócitos B/metabolismo , Ligação Competitiva/genética , Ligação Competitiva/imunologia , Diferenciação Celular/genética , Linhagem Celular Tumoral , Células Cultivadas , Técnicas de Cocultura , Proteínas de Ligação a DNA/genética , Proteínas de Ligação a DNA/metabolismo , Elementos Facilitadores Genéticos/genética , Cadeias kappa de Imunoglobulina/metabolismo , Cadeias kappa de Imunoglobulina/fisiologia , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , Modelos Moleculares , Células NIH 3T3 , Ligação Proteica/genética , Ligação Proteica/imunologia , Proteínas Proto-Oncogênicas/fisiologia , Fator de Transcrição STAT5/fisiologia , Transativadores/fisiologia
5.
Arch Biochem Biophys ; 537(1): 21-30, 2013 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-23810294

RESUMO

Celastrol (CEL) is known as a potent inducer of heat shock protein (HSP) in non-muscle cells and exhibits cytoprotective function and inhibitory effects on proteasome and glucocorticoid receptor activities. To investigate an anti-atrophic effect of CEL on skeletal muscle cells, C2C12 myotubes were treated with 150 µM dexamethasone (DEX) for 24h and 1.5 µM CEL was added for the last 6h during the 24h DEX treatment. Compared to the control, the myotube diameter was reduced by a factor of 0.30 by DEX, but CEL treatment almost abrogated the DEX-induced atrophy. CEL treatment also increased expression of HSP72 and phosphorylation of heat shock transcription factor 1 (p-HSF1) 11-fold and 3.4-fold, respectively, as well as accumulation of p-HSF1 in the nucleus. Furthermore, CEL treatment elevated activities of Akt1, p70/S6K and ERK1/2 2.0- to 4.4-fold whereas DEX had no effect on these signaling activities. Inhibition of Akt1 and ERK1/2 pathways by specific inhibitors confirmed CEL-induced anti-atrophic effect. Moreover, DEX-mediated downregulation of FoxO3 phosphorylation and upregulation of MuRF1 expression and proteasome activity were abrogated by CEL treatment. These results demonstrate a novel anti-atrophic function of CEL in muscle cells via both activation of protein anabolic signals and suppression of catabolic signaling activities.


Assuntos
Proteínas de Ligação a DNA/metabolismo , Proteínas de Choque Térmico HSP70/metabolismo , Sistema de Sinalização das MAP Quinases/efeitos dos fármacos , Fibras Musculares Esqueléticas/metabolismo , Fibras Musculares Esqueléticas/patologia , Proteínas Proto-Oncogênicas c-akt/metabolismo , Fatores de Transcrição/metabolismo , Triterpenos/administração & dosagem , Animais , Apoptose/efeitos dos fármacos , Linhagem Celular , Ativação Enzimática/efeitos dos fármacos , Fatores de Transcrição de Choque Térmico , Camundongos , Fibras Musculares Esqueléticas/efeitos dos fármacos , Atrofia Muscular/tratamento farmacológico , Atrofia Muscular/metabolismo , Atrofia Muscular/patologia , Triterpenos Pentacíclicos , Inibidores de Proteínas Quinases/administração & dosagem
6.
J Microbiol Biotechnol ; 33(5): 698-705, 2023 May 28.
Artigo em Inglês | MEDLINE | ID: mdl-36959167

RESUMO

Rapid diagnosis of methicillin-resistant Staphylococcus aureus (MRSA) is essential for guiding clinical treatment and preventing the spread of MRSA infections. Herein, we present a simple and rapid MRSA screening test based on the aggregation effect of mannose-binding lectin (MBL)-conjugated gold nanoparticles (AuNP), called the MRSA probe. Recombinant MBL protein is a member of the lectin family and part of the innate immune system. It can recognize wall teichoic acid (WTA) on the membrane of MRSA more specifically than that of methicillin-sensitive Staphylococcus aureus (MSSA) under optimized salt conditions. Thus, the MRSA probe can selectively bind to MRSA, and the aggregation of the probes on the surface of the target bacteria can be detected and analyzed by the naked eye within 5 min. To demonstrate the suitability of the method for real-world application, we tested 40 clinical S. aureus isolates (including 20 MRSA specimens) and recorded a sensitivity of 100%. In conclusion, the MRSA probe-based screening test with its excellent sensitivity has the potential for successful application in the microbiology laboratory.


Assuntos
Nanopartículas Metálicas , Staphylococcus aureus Resistente à Meticilina , Infecções Estafilocócicas , Humanos , Staphylococcus aureus , Ouro , Meticilina/metabolismo , Meticilina/farmacologia , Infecções Estafilocócicas/diagnóstico , Infecções Estafilocócicas/microbiologia , Antibacterianos/farmacologia , Testes de Sensibilidade Microbiana
7.
Cell Mol Gastroenterol Hepatol ; 15(4): 841-867, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36521660

RESUMO

BACKGROUND & AIMS: Fibroblast activation protein (FAP) is expressed on activated fibroblast. Its role in fibrosis and desmoplasia is controversial, and data on pharmacological FAP inhibition are lacking. We aimed to better define the role of FAP in liver fibrosis in vivo and in vitro. METHODS: FAP expression was analyzed in mice and patients with fibrotic liver diseases of various etiologies. Fibrotic mice received a specific FAP inhibitor (FAPi) at 2 doses orally for 2 weeks during parenchymal fibrosis progression (6 weeks of carbon tetrachloride) and regression (2 weeks off carbon tetrachloride), and with biliary fibrosis (Mdr2-/-). Recombinant FAP was added to (co-)cultures of hepatic stellate cells (HSC), fibroblasts, and macrophages. Fibrosis- and inflammation-related parameters were determined biochemically, by quantitative immunohistochemistry, polymerase chain reaction, and transcriptomics. RESULTS: FAP+ fibroblasts/HSCs were α-smooth muscle actin (α-SMA)-negative and located at interfaces of fibrotic septa next to macrophages in murine and human livers. In parenchymal fibrosis, FAPi reduced collagen area, liver collagen content, α-SMA+ myofibroblasts, M2-type macrophages, serum alanine transaminase and aspartate aminotransferase, key fibrogenesis-related transcripts, and increased hepatocyte proliferation 10-fold. During regression, FAP was suppressed, and FAPi was ineffective. FAPi less potently inhibited biliary fibrosis. In vitro, FAP small interfering RNA reduced HSC α-SMA expression and collagen production, and FAPi suppressed their activation and proliferation. Compared with untreated macrophages, FAPi regulated macrophage profibrogenic activation and transcriptome, and their conditioned medium attenuated HSC activation, which was increased with addition of recombinant FAP. CONCLUSIONS: Pharmacological FAP inhibition attenuates inflammation-predominant liver fibrosis. FAP is expressed on subsets of activated fibroblasts/HSC and promotes both macrophage and HSC profibrogenic activity in liver fibrosis.


Assuntos
Hepatite , Hepatopatias , Humanos , Camundongos , Animais , Tetracloreto de Carbono/toxicidade , Cirrose Hepática/metabolismo , Inflamação , Fibrose , Colágeno/metabolismo , Fibroblastos/metabolismo , Macrófagos/metabolismo
8.
Antimicrob Agents Chemother ; 56(7): 3508-15, 2012 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-22547612

RESUMO

We previously reported that among a series of artemisinin-derived monomers and dimers, dimer diphenyl phosphate (838) was the most potent inhibitor of human cytomegalovirus (CMV) replication. Our continued investigation of a prototypic artemisinin monomer (artesunate [AS]) and dimer (838) now reveals that both compounds have specific activity against CMV but do not inhibit lytic replication of human herpesvirus 1 or 2 or Epstein-Barr virus. AS and 838 inhibited CMV replication during the first 24 h of the virus replication cycle, earlier than the time of ganciclovir (GCV) activities and prior to DNA synthesis. Neither compound inhibited virus entry. Quantification of DNA replication and virus yield revealed a similar level of inhibition by GCV, but AS and 838 had a 10-fold-higher inhibition of virus yield than of DNA replication, suggesting that artemisinins could inhibit CMV through multiple steps: a predominant early inhibition and possibly an additional step following DNA replication. During the strong early CMV inhibition, the transcription of immediate-early genes was not significantly downregulated, and viral protein expression was reduced only after 48 h. AS and GCV were reversible CMV inhibitors, but the inhibition of CMV replication by 838 was irreversible. Combinations of GCV and 838 as well as GCV and AS were highly synergistic. Finally, treatment with 838, but not AS, prior to CMV infection demonstrated strong anti-CMV activity. These findings illustrate the unique activities of dimer 838, including early and irreversible CMV inhibition, possibly by tight binding to its target.


Assuntos
Antivirais/química , Antivirais/farmacologia , Artemisininas/química , Citomegalovirus/efeitos dos fármacos , Replicação Viral/efeitos dos fármacos , Animais , Western Blotting , Linhagem Celular , Chlorocebus aethiops , Citomegalovirus/genética , Replicação do DNA/efeitos dos fármacos , Imunofluorescência , Humanos , Células Vero
9.
Cells ; 11(3)2022 01 21.
Artigo em Inglês | MEDLINE | ID: mdl-35159173

RESUMO

High-grade ovarian cancer (HGOC) is the most lethal gynecological cancer, with high metastasis and recurrence. Cancer stem cells (CSCs) are responsible for its apoptosis resistance, cancer metastasis, and recurrence. Thus, targeting CSCs would be a promising strategy for overcoming chemotherapy resistance and improving patient prognosis in HGOC. Among upregulated oncogenic proteins in HGOC, we found that transcription factor SOX9 showed a strong correlation with stemness-regulating ALDH1A1 and was localized predominantly in the cytoplasm of HGOC with lymph node metastasis. In order to address the role of unusual cytoplasmic SOX9 and to explore its underlying mechanism in HGOC malignancy, a Y2H assay was used to identify a necroptotic cell death-associated cytoplasmic protein, receptor-interacting serine/threonine protein kinase 1 (RIPK1), as a novel SOX9-interacting partner and further mapped their respective interacting domains. The C-terminal region containing the transactivation domain of SOX9 interacted with the death domain of R1PK1. Consistent with its stemness-promoting function, SOX9 knockdown in vitro resulted in changes in cell morphology, cell cycle, stem cell marker expression, cell invasion, and sphere formation. Furthermore, in vivo knockdown completely inhibited tumor growth in mouse xenograft model. We propose that cytoplasmic SOX9-mediated cell death suppression would contribute to cancer stem cell survival in HGOC.


Assuntos
Neoplasias , Proteína Serina-Treonina Quinases de Interação com Receptores , Fatores de Transcrição SOX9 , Animais , Morte Celular , Linhagem Celular Tumoral , Regulação Neoplásica da Expressão Gênica , Humanos , Camundongos , Neoplasias/metabolismo , Células-Tronco Neoplásicas/patologia , Proteína Serina-Treonina Quinases de Interação com Receptores/genética , Proteína Serina-Treonina Quinases de Interação com Receptores/metabolismo , Fatores de Transcrição SOX9/genética , Fatores de Transcrição SOX9/metabolismo
10.
Sci Rep ; 12(1): 3216, 2022 02 25.
Artigo em Inglês | MEDLINE | ID: mdl-35217678

RESUMO

Sialic acid (SA) is present in glycoconjugates and important in cell-cell recognition, cell adhesion, and cell growth and as a receptor. Among the four mammalian sialidases, cytosolic NEU2 has a pivotal role in muscle and neuronal differentiation in vitro. However, its biological functions in vivo remain unclear due to its very low expression in humans. However, the presence of cytoplasmic glycoproteins, gangliosides, and lectins involved in cellular metabolism and glycan recognition has suggested the functional importance of cytosolic Neu2 sialidases. We generated a Neu2 knockout mouse model via CRISPR/Cas9-mediated genome engineering and analyzed the offspring littermates at different ages to investigate the in vivo function of cytosolic Neu2 sialidase. Surprisingly, knocking out the Neu2 gene in vivo abrogated overall lipid metabolism, impairing motor function and leading to diabetes. Consistent with these results, Neu2 knockout led to alterations in sialylated glycoproteins involved in lipid metabolism and muscle function, as shown by glycoproteomics analysis.


Assuntos
Metabolismo dos Lipídeos , Músculos , Neuraminidase , Animais , Citosol/metabolismo , Mamíferos/metabolismo , Camundongos , Músculos/metabolismo , Ácido N-Acetilneuramínico/metabolismo , Neuraminidase/genética , Neuraminidase/metabolismo
11.
Biochim Biophys Acta ; 1800(2): 96-106, 2010 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-19647786

RESUMO

BACKGROUND: Since its discovery in the early 1980s, O-linked-beta-N-acetylglucosamine (O-GlcNAc), a single sugar modification on the hydroxyl group of serine or threonine residues, has changed our views of protein glycosylation. While other forms of protein glycosylation modify proteins on the cell surface or within luminal compartments of the secretory machinery, O-GlcNAc modifies myriad nucleocytoplasmic proteins. GlcNAcylated proteins are involved in transcription, ubiquitination, cell cycle, and stress responses. GlcNAcylation is similar to protein phosphorylation in terms of stoichiometry, localization and cycling. To date, only two enzymes are known to regulate GlcNAcylation in mammals: O-GlcNAc transferase (OGT), which catalyzes the addition of O-GlcNAc, and beta-N-acetylglucosaminidase (O-GlcNAcase), a neutral hexosaminidase responsible for O-GlcNAc removal. OGT and O-GlcNAcase are regulated by RNA splicing, by nutrients, and by post-translational modifications. Their specificities are controlled by many transiently associated targeting subunits. As methods for detecting O-GlcNAc have improved our understanding of O-GlcNAc's functions has grown rapidly. SCOPE OF REVIEW: In this review, the functions of GlcNAcylation in regulating cellular processes, its extensive crosstalk with protein phosphorylation, and regulation of OGT and O-GlcNAcase will be explored. MAJOR CONCLUSIONS: GlcNAcylation rivals phosphorylation in terms of its abundance, protein distribution and its cycling on and off of proteins. GlcNAcylation has extensive crosstalk with phosphorylation to regulate signaling, transcription and the cytoskeleton in response to nutrients and stress. GENERAL SIGNIFICANCE: Abnormal crosstalk between GlcNAcylation and phosphorylation underlies dysregulation in diabetes, including glucose toxicity, and defective GlcNAcylation is involved in neurodegenerative disease and cancer and most recently in AIDS.


Assuntos
Acetilglucosamina/metabolismo , N-Acetilglucosaminiltransferases/metabolismo , Transdução de Sinais/fisiologia , Estresse Fisiológico/fisiologia , Acetilglucosaminidase/metabolismo , Animais , Diabetes Mellitus/fisiopatologia , Alimentos , Regulação Enzimológica da Expressão Gênica/fisiologia , Hexosaminas/biossíntese , Humanos , Neurônios/fisiologia , Fosforilação , Complexo de Endopeptidases do Proteassoma/fisiologia , Processamento de Proteína Pós-Traducional , Ubiquitinação
12.
J Cell Physiol ; 226(4): 853-8, 2011 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-21268024

RESUMO

Despite significant medical benefits as in space exploration or emergency care, prolonged torpidity of non-hibernator mammals remains unexplored to date. Here, we report that male Institute of Cancer Research mice could sustain two separate 2-day torpor bouts and maintain body temperature of 28-33°C following repeated treatments of 3-iodothyronamine (T(1) AM), a natural derivative of thyroid hormone. A 1-day interbout arousal period, adopted to mimic the behavior of true hibernators, seemed critical for the subjects to restore physiological homeostasis. Molecular studies of neuron-specific enolase, S100 calcium binding protein B and heat shock protein 72 suggested that the brain maintains functional and cytoprotective activities during sustained torpidity. Together, the results of this study propose a practical protocol using a torpor-arousal cycle that can be applied to the extreme medical situations.


Assuntos
Hibernação/efeitos dos fármacos , Tironinas/administração & dosagem , Tironinas/farmacologia , Animais , Comportamento Animal/efeitos dos fármacos , Temperatura Corporal/efeitos dos fármacos , Peso Corporal/efeitos dos fármacos , Relação Dose-Resposta a Droga , Masculino , Camundongos , Camundongos Endogâmicos ICR , Sistema Nervoso/efeitos dos fármacos , Consumo de Oxigênio/efeitos dos fármacos , Fatores de Tempo
13.
Analyst ; 136(12): 2506-11, 2011 Jun 21.
Artigo em Inglês | MEDLINE | ID: mdl-21519608

RESUMO

Here we report an effective method for protein immobilization on a surface plasmon resonance (SPR) gold chip, describing the combination of cysteine- and oligomerization domain-mediated immobilization of enhanced green fluorescent protein (EGFP) as a model protein for the purpose of orientation-controlled surface density packing. In order to facilitate the oligomerization of EGFP, the dimeric and trimeric constructs derived from GCN4- leucine zipper domain were chosen for multimeric EGFP assembly. For orientation-controlled immobilization of the protein, EGFP modified with cysteine residues showing excellent orientation on a gold chip was used as a starting protein, as previously reported in our earlier study (Anal. Chem., 2007, 79, 2680-2687). Constructs of EGFP with oligomerization domains were genetically engineered, and corresponding fusion proteins were purified, applied to a gold chip, and then analyzed under SPR. The immobilized EGFP density on a gold chip increased according to the states of protein oligomerization, as dimeric and trimeric EGFPs displayed better adsorption capability than monomeric and dimeric forms, respectively. Fluorescence measurement corroborated the SPR results. Taken together, our findings indicated that the combination of cysteine- and oligomerization domain-mediated immobilization of protein could be used in SPR biosensor applications, allowing for an excellent orientation and high surface density simultaneously.


Assuntos
Cisteína/química , Ouro/química , Proteínas de Fluorescência Verde/química , Ressonância de Plasmônio de Superfície/métodos , Fatores de Transcrição de Zíper de Leucina Básica/química , Técnicas Biossensoriais/métodos , Proteínas Imobilizadas/química , Zíper de Leucina , Saccharomyces cerevisiae/metabolismo , Proteínas de Saccharomyces cerevisiae/química
14.
ACS Sens ; 5(10): 3099-3108, 2020 10 23.
Artigo em Inglês | MEDLINE | ID: mdl-32786378

RESUMO

Biological metamaterials with a specific size and spacing are necessary for developing highly sensitive and selective sensing systems to detect hazardous bacteria in complex solutions. Herein, the construction of peptidoglycan-binding protein (PGBP)-based metamaterials to selectively capture Gram-positive cells with high efficacy is reported. Nanoimprint lithography was used to generate a nanohole pattern as a template, the inside of which was modified with nickel(II)-nitrilotriacetic acid (Ni-NTA). Then, PGBP metamaterials were fabricated by immobilizing PGBP via chelation between Ni-NTA and six histidines on PGBP. Compared to the flat and spread PGBP-covered bare substrates, the PGBP-based metamaterials enabled selective capturing of Gram-positive bacteria with high efficacy, owing to enhanced interactions between the metamaterials and bacterial surface not shown in bulk materials. Thereafter, the specific strain and quantitative information of the captured bacteria was obtained by surface-enhanced Raman scattering mapping analysis in the 1 to 1 × 106 cfu/mL range within 30 min. It should be noted that no additional signal amplification process was required for lowly abundant bacteria, even at the single-bacterium level. The PGBP-based metamaterials could be regenerated multiple times with preserved sensing efficiency. Finally, this assay can detect specific Gram-positive bacteria, such as Staphylococcus aureus, in human plasma.


Assuntos
Peptidoglicano , Análise Espectral Raman , Bactérias , Proteínas de Transporte , Bactérias Gram-Positivas , Humanos
15.
ACS Infect Dis ; 6(2): 215-223, 2020 02 14.
Artigo em Inglês | MEDLINE | ID: mdl-31823600

RESUMO

In this study, we describe a simple and rapid antibacterial susceptibility testing (AST) method for Staphylococcus aureus called S. aureus specific fluorescence resonance energy transfer (FRET) probe-based AST (SF-AST), which is based on an S. aureus specific FRET probe (SF probe) that detects micrococcal nuclease (MNase) activity secreted from S. aureus. The SF-AST was tested with an S. aureus quality control (QC) strain against six relevant antibiotics, and the minimum inhibitory concentration (MIC) values obtained with the broth microdilution (BMD) method were compared, as a gold standard AST. Results were obtained with high accuracy in 4-6 h. The MIC for the methicillin resistance using 20 clinical S. aureus isolates of SF-AST showed 100% sensitivity, specificity, positive predictive value, and negative predictive value, as compared to BMD. Thus, the SF-AST method is a simple, rapid, and useful antibiotic resistance test for S. aureus, and it provides a basis for clinical treatment in a short time.


Assuntos
Antibacterianos/farmacologia , Nuclease do Micrococo/metabolismo , Staphylococcus aureus/efeitos dos fármacos , Staphylococcus aureus/enzimologia , Sondas de DNA , Transferência Ressonante de Energia de Fluorescência , Resistência a Meticilina , Testes de Sensibilidade Microbiana , Valor Preditivo dos Testes , Reprodutibilidade dos Testes , Sensibilidade e Especificidade
16.
Cells ; 9(8)2020 08 07.
Artigo em Inglês | MEDLINE | ID: mdl-32784646

RESUMO

Previously, we demonstrated that the homeoprotein Msx1 interaction with p53 inhibited tumor growth by inducing apoptosis. However, Msx1 can exert its tumor suppressive effect through the inhibition of angiogenesis since growth of the tumor relies on sufficient blood supply from the existing vessels to provide oxygen and nutrients for tumor growth. We hypothesized that the inhibition of tumor growth by Msx1 might be due to the inhibition of angiogenesis. Here, we explored the role of Msx1 in angiogenesis. Overexpression of Msx1 in HUVECs inhibited angiogenesis, and silencing of Msx1 by siRNA abrogated its anti-angiogenic effects. Furthermore, forced expression of Msx1 in mouse muscle tissue inhibited vessel sprouting, and application of an Ad-Msx1-transfected conditioned medium onto the chicken chorioallantoic membrane (CAM) led to a significant inhibition of new vessel formation. To explore the underlying mechanism of Msx1-mediated angiogenesis, yeast two-hybrid screening was performed, and we identified PIASy (protein inhibitor of activated STAT Y) as a novel Msx1-interacting protein. We mapped the homeodomain of Msx1 and the C-terminal domain of PIASy as respective interacting domains. Consistent with its anti-angiogenic function, overexpression of Msx1 suppressed the reporter activity of VEGF. Interestingly, PIASy stabilized Msx1 protein, whereas deletion of the Msx1-interacting domain in PIASy abrogated the inhibition of tube formation and the stabilization of Msx1 protein. Our findings suggest the functional importance of PIASy-Msx1 interaction in Msx1-mediated angiogenesis inhibition.


Assuntos
Fator de Transcrição MSX1/metabolismo , Neovascularização Fisiológica , Proteínas de Ligação a Poli-ADP-Ribose/metabolismo , Proteínas Inibidoras de STAT Ativados/metabolismo , Fator A de Crescimento do Endotélio Vascular/metabolismo , Animais , Embrião de Galinha , Células Endoteliais da Veia Umbilical Humana , Humanos , Camundongos , Camundongos Endogâmicos BALB C , Ligação Proteica
17.
Nano Converg ; 7(1): 13, 2020 Apr 11.
Artigo em Inglês | MEDLINE | ID: mdl-32279129

RESUMO

This work reports on a rapid diagnostic platform for the detection of Plasmodium falciparum lactate dehydrogenase (PfLDH), a representative malaria biomarker, using a microfluidic microplate-based immunoassay. In this study, the microfluidic microplate made it possible to diagnose PfLDH with a small volume of sample (only 5 µL) and short time (< 90 min) compared to conventional immunoassays such as enzyme-linked immunosorbent assay (ELISA). Moreover, the diagnostic performance of PfLDH showed high sensitivity, specificity, and selectivity (i.e., 0.025 pg/µL in phosphate-buffered saline and 1 pg/µL in human serum). The microfluidic-based microplate sensing platform has the potential to adapt simple, rapid, and accurate diagnoses to the practical detection of malaria.

18.
Micromachines (Basel) ; 11(2)2020 Feb 16.
Artigo em Inglês | MEDLINE | ID: mdl-32079062

RESUMO

Influenza A viruses are often present in environmental and clinical samples at concentrations below the limit of detection (LOD) of molecular diagnostics. Here we report an integrated microfluidic preconcentration and nucleic amplification system (µFPNAS) which enables both preconcentration of influenza A virus H1N1 (H1N1) and amplification of its viral RNA, thereby lowering LOD for H1N1. H1N1 virus particles were first magnetically preconcentrated using magnetic nanoparticles conjugated with an antibody specific for the virus. Their isolated RNA was amplified to cDNA through thermocycling in a trapezoidal chamber of the µFPNAS. A detection limit as low as 100 TCID50 (50% tissue culture infective dose) in saliva can be obtained within 2 hours. These results suggest that the LOD of molecular diagnostics for virus can be lowered by systematically combining immunomagnetic separation and reverse transcriptase-polymerase chain reaction (RT-PCR) in one microfluidic device.

19.
Int J Cancer ; 124(2): 287-97, 2009 Jan 15.
Artigo em Inglês | MEDLINE | ID: mdl-19003969

RESUMO

The Wnt/beta-catenin signaling pathway is activated during the malignant transformation of keratinocytes that originate from the human uterine cervix. Dkk1, 2 and 4 have been shown to modulate the Wnt-induced stabilization of the beta-catenin signaling pathway. However, the function of Dkk3 in this pathway is unknown. Comparison of the Dkk3 gene expression profiles in cervical cancer and normal cervical tissue by cDNA microarray and subsequent real-time PCR revealed that the Dkk3 gene is frequently downregulated in the cancer. Methylation studies showed that the promoter of Dkk3 was methylated in cervical cancer cell lines and 22 (31.4%) of 70 cervical cancer tissue specimens. This promoter methylation was associated with reduced expression of Dkk3 mRNA in the paired normal and tumor tissue samples. Further, the reintroduction of Dkk3 into HeLa cervical cancer cells resulted in reduced colony formation and retarded cell growth. The forced expression of Dkk3 markedly attenuated beta-catenin-responsive luciferase activity in a dose-dependent manner and decreased the beta-catenin levels. By utilizing a yeast two-hybrid screen, betaTrCP, a negative regulator of beta-catenin was identified as a novel Dkk3-interacting partner. Coexpression with betaTrCP synergistically enhanced the inhibitory function of Dkk3 on beta-catenin. The stable expression of Dkk3 blocks the nuclear translocation of beta-catenin, resulting in downregulation of its downstream targets (VEGF and cylcin D), whereas knockdown of Dkk3 abrogates this blocking. We conclude from our finding that Dkk3 is a negative regulator of beta-catenin and its downregulation contribute to an activation of the beta-catenin signaling pathway.


Assuntos
Regulação Neoplásica da Expressão Gênica , Peptídeos e Proteínas de Sinalização Intercelular/biossíntese , Neoplasias do Colo do Útero/metabolismo , beta Catenina/metabolismo , Transporte Ativo do Núcleo Celular , Proteínas Adaptadoras de Transdução de Sinal , Proliferação de Células , Transformação Celular Neoplásica , Quimiocinas , Regulação para Baixo , Feminino , Células HeLa , Humanos , Modelos Biológicos , Polimorfismo de Nucleotídeo Único , Regiões Promotoras Genéticas , Técnicas do Sistema de Duplo-Híbrido
20.
Biochem Biophys Res Commun ; 388(3): 560-4, 2009 Oct 23.
Artigo em Inglês | MEDLINE | ID: mdl-19682975

RESUMO

The principal objective of this study was to explore protein conformational changes using fluorescence resonance energy transfer (FRET) technology. Maltose binding protein (MBP) was adopted as a target model, due to its well-characterized structure and ligand specificity. To the best of our knowledge, this is the first report to provide information regarding the biological distance between the two lobes of MBP upon maltose binding. For the FRET pair, ECFP and EYFP were used as the donor and the acceptor, and were linked genetically to the C-terminal and N-terminal regions of MBP (ECFP:MBP:EYFP), respectively. After the FRET reaction, maltose-treated MBP was shown to exhibit a considerable energy transfer (FRET efficiency (E)= approximately 0.11, Distance (D)= approximately 6.93 nm) at the ensemble level, which was regarded as reflective of the increase in donor quenching and the upshift in acceptor emission intensity, thereby suggesting that the donor and the acceptor had been brought close together as the result of structural alterations in MBP. However, upon glucose treatment, no FRET phenomenon was detected, thereby implying the specificity of interaction between MBP and maltose. The in vitro FRET results were also confirmed via the acceptor photobleaching method. Therefore, our data showed that maltose-stimulated conformational changes of MBP could be measured by FRET, thereby providing biological information, including the FRET efficiency and the intramolecular distance.


Assuntos
Proteínas de Transporte/química , Transferência Ressonante de Energia de Fluorescência/métodos , Maltose/química , Proteínas Ligantes de Maltose , Conformação Proteica
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa