Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
J Neuroinflammation ; 20(1): 187, 2023 Aug 14.
Artigo em Inglês | MEDLINE | ID: mdl-37580715

RESUMO

BACKGROUND: Neuroinflammation is a widely studied phenomenon underlying various neurodegenerative diseases. Earlier study demonstrated that pharmacological activation of GPR110 in both central and peripheral immune cells cooperatively ameliorates neuroinflammation caused by systemic lipopolysaccharide (LPS) administration. Ethanol consumption has been associated with exacerbation of neurodegenerative and systemic inflammatory conditions. The goal of this study is to determine the effects of single-dose acute ethanol exposure and GPR110 activation on the neuro-inflammation mechanisms. METHODS: For in vivo studies, GPR110 wild type (WT) and knockout (KO) mice at 10-12 weeks of age were given an oral gavage of ethanol (3 g/kg) or maltose (5.4 g/kg) at 1-4 h prior to the injection of LPS (1 mg/kg, i.p.) followed by the GPR110 ligand, synaptamide (5 mg/kg). After 2-24 h, brains were collected for the analysis of gene expression by RT-PCR or protein expression by western blotting and enzyme-linked immunosorbent assay (ELISA). Microglial activation was assessed by western blotting and immunohistochemistry. For in vitro studies, microglia and peritoneal macrophages were isolated from adult WT mice and treated with 25 mM ethanol for 4 h and then with LPS (100 ng/ml) followed by 10 nM synaptamide for 2 h for gene expression and 12 h for protein analysis. RESULTS: Single-dose exposure to ethanol by gavage before LPS injection upregulated pro-inflammatory cytokine expression in the brain and plasma. The LPS-induced Iba-1 expression in the brain was significantly higher after ethanol pretreatment in both WT and GPR110KO mice. GPR110 ligand decreased the mRNA and/or protein expression of these cytokines and Iba-1 in the WT but not in GPR110KO mice. In the isolated microglia and peritoneal macrophages, ethanol also exacerbated the LPS-induced expression of pro-inflammatory cytokines which was mitigated at least partially by synaptamide. The expression of an inflammasome marker NLRP3 upregulated by LPS was further elevated with prior exposure to ethanol, especially in the brains of GPR110KO mice. Both ethanol and LPS reduced adenylate cyclase 8 mRNA expression which was reversed by the activation of GPR110. PDE4B expression at both mRNA and protein level in the brain increased after ethanol and LPS treatment while synaptamide suppressed its expression in a GPR110-dependent manner. CONCLUSION: Single-dose ethanol exposure exacerbated LPS-induced inflammatory responses. The GPR110 ligand synaptamide ameliorated this effect of ethanol by counteracting on the cAMP system, the common target for synaptamide and ethanol, and by regulating NLRP3 inflammasome.


Assuntos
Etanol , Doenças Neuroinflamatórias , Receptores Acoplados a Proteínas G , Animais , Camundongos , Citocinas/metabolismo , Etanol/toxicidade , Inflamassomos/metabolismo , Ligantes , Lipopolissacarídeos/toxicidade , Camundongos Endogâmicos C57BL , Camundongos Knockout , Microglia/metabolismo , Proteína 3 que Contém Domínio de Pirina da Família NLR/metabolismo , Receptores Acoplados a Proteínas G/genética , Receptores Acoplados a Proteínas G/metabolismo , RNA Mensageiro/metabolismo
2.
J Neuroinflammation ; 16(1): 225, 2019 Nov 15.
Artigo em Inglês | MEDLINE | ID: mdl-31730008

RESUMO

BACKGROUND: Neuroinflammation is a widely accepted underlying condition for various pathological processes in the brain. In a recent study, synaptamide, an endogenous metabolite derived from docosahexaenoic acid (DHA, 22:6n-3), was identified as a specific ligand to orphan adhesion G-protein-coupled receptor 110 (GPR110, ADGRF1). Synaptamide has been shown to suppress lipopolysaccharide (LPS)-induced neuroinflammation in mice, but involvement of GPR110 in this process has not been established. In this study, we investigated the possible immune regulatory role of GPR110 in mediating the anti-neuroinflammatory effects of synaptamide under a systemic inflammatory condition. METHODS: For in vitro studies, we assessed the role of GPR110 in synaptamide effects on LPS-induced inflammatory responses in adult primary mouse microglia, immortalized murine microglial cells (BV2), primary neutrophil, and peritoneal macrophage by using quantitative PCR (qPCR) and enzyme-linked immunosorbent assay (ELISA) as well as neutrophil migration and ROS production assays. To evaluate in vivo effects, wild-type (WT) and GPR110 knock-out (KO) mice were injected with LPS intraperitoneally (i.p.) or TNF intravenously (i.v.) followed by synaptamide (i.p.), and expression of proinflammatory mediators was measured by qPCR, ELISA, and western blot analysis. Activated microglia in the brain and NF-kB activation in cells were examined microscopically after immunostaining for Iba-1 and RelA, respectively. RESULTS: Intraperitoneal (i.p.) administration of LPS increased TNF and IL-1ß in the blood and induced pro-inflammatory cytokine expression in the brain. Subsequent i.p. injection of the GPR110 ligand synaptamide significantly reduced LPS-induced inflammatory responses in wild-type (WT) but not in GPR110 knock-out (KO) mice. In cultured microglia, synaptamide increased cAMP and inhibited LPS-induced proinflammatory cytokine expression by inhibiting the translocation of NF-κB subunit RelA into the nucleus. These effects were abolished by blocking synaptamide binding to GPR110 using an N-terminal targeting antibody. GPR110 expression was found to be high in neutrophils and macrophages where synaptamide also caused a GPR110-dependent increase in cAMP and inhibition of LPS-induced pro-inflammatory mediator expression. Intravenous injection of TNF, a pro-inflammatory cytokine that increases in the circulation after LPS treatment, elicited inflammatory responses in the brain which were dampened by the subsequent injection (i.p.) of synaptamide in a GPR110-dependent manner. CONCLUSION: Our study demonstrates the immune-regulatory function of GPR110 in both brain and periphery, collectively contributing to the anti-neuroinflammatory effects of synaptamide under a systemic inflammatory condition. We suggest GPR110 activation as a novel therapeutic strategy to ameliorate inflammation in the brain as well as periphery.


Assuntos
Anti-Inflamatórios/farmacologia , Encéfalo/efeitos dos fármacos , Encéfalo/metabolismo , Etanolaminas/farmacologia , Inflamação/metabolismo , Receptores Acoplados a Proteínas G/metabolismo , Animais , Feminino , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout
3.
J Neuroinflammation ; 13(1): 253, 2016 Sep 23.
Artigo em Inglês | MEDLINE | ID: mdl-27663791

RESUMO

BACKGROUND: Adequate consumption of polyunsaturated fatty acids (PUFA) is vital for normal development and functioning of the central nervous system. The long-chain n-3 PUFAs docosahexaenoic acid (DHA) and eicosapentaenoic acid are anti-inflammatory and neuroprotective in the models of central nervous system injury including traumatic brain injury (TBI). In the present study, we tested whether a higher brain DHA status in a mouse model on an adequate dietary α-linolenic acid (ALA) leads to reduced neuroinflammation and improved spontaneous recovery after TBI in comparison to a moderately lowered brain DHA status that can occur in humans. METHODS: Mice reared on diets with differing ALA content were injured by a single cortical contusion impact. Change in the expression of inflammatory cytokines was measured, and cellular changes occurring after injury were analyzed by immunostaining for macrophage/microglia and astrocytes. Behavioral studies included rotarod and beam walk tests and contextual fear conditioning. RESULTS: Marginal supply (0.04 %) of ALA as the sole dietary source of n-3 PUFA from early gestation produced reduction of brain DHA by 35 % in adult offspring mice in comparison to the mice on adequate ALA diet (3.1 %). The DHA-depleted group showed significantly increased TBI-induced expression of pro-inflammatory cytokines TNF-α, IL-1ß, and IL-6 in the brain as well as slower functional recovery from motor deficits compared to the adequate ALA group. Despite the reduction of pro-inflammatory cytokine expression, adequate ALA diet did not significantly alter either microglia/macrophage density around the contusion site or the relative M1/M2 phenotype. However, the glial fibrillary acidic protein immunoreactivity was reduced in the injured cerebral cortex of the mice on adequate ALA diet, indicating that astrocyte activation may have contributed to the observed differences in cellular and behavioral responses to TBI. CONCLUSIONS: Increasing the brain DHA level even from a moderately DHA-depleted state can reduce neuroinflammation and improve functional recovery after TBI, suggesting possible improvement of functional outcome by increasing dietary n-3 PUFA in human TBI.

4.
J Neuroinflammation ; 13(1): 284, 2016 11 04.
Artigo em Inglês | MEDLINE | ID: mdl-27809877

RESUMO

BACKGROUND: Brain inflammation has been implicated as a critical mechanism responsible for the progression of neurodegeneration and characterized by glial cell activation accompanied by production of inflammation-related cytokines and chemokines. Growing evidence also suggests that metabolites derived from docosahexaenoic acid (DHA) have anti-inflammatory and pro-resolving effects; however, the possible role of N-docosahexaenoylethanolamine (synaptamide), an endogenous neurogenic and synaptogenic metabolite of DHA, in inflammation, is largely unknown. (The term "synaptamide" instead of "DHEA" was used for N-docosahexaenoylethanolamine since DHEA is a widely used and accepted term for the steroid, dehydroepiandrosterone.) In the present study, we tested this possibility using a lipopolysaccharide (LPS)-induced neuroinflammation model both in vitro and in vivo. METHODS: For in vitro studies, we used P3 primary rat microglia and immortalized murine microglia cells (BV2) to assess synaptamide effects on LPS-induced cytokine/chemokine/iNOS (inducible nitric oxide synthase) expression by quantitative PCR (qPCR) and enzyme-linked immunosorbent assay (ELISA). To evaluate in vivo effects, mice were intraperitoneally (i.p.) injected with LPS followed by synaptamide, and expression of proinflammatory mediators was measured by qPCR and western blot analysis. Activation of microglia and astrocyte in the brain was examined by Iba-1 and GFAP immunostaining. RESULTS: Synaptamide significantly reduced LPS-induced production of TNF-α and NO in cultured microglia cells. Synaptamide increased intracellular cAMP levels, phosphorylation of PKA, and phosphorylation of CREB but suppressed LPS-induced nuclear translocation of NF-κB p65. Conversely, adenylyl cyclase or PKA inhibitors abolished the synaptamide effect on p65 translocation as well as TNF-α and iNOS expression. Administration of synaptamide following LPS injection (i.p.) significantly reduced neuroinflammatory responses, such as microglia activation and mRNA expression of inflammatory cytokines, chemokine, and iNOS in the brain. CONCLUSIONS: DHA-derived synaptamide is a potent suppressor of neuroinflammation in an LPS-induced model, by enhancing cAMP/PKA signaling and inhibiting NF-κB activation. The anti-inflammatory capability of synaptamide may provide a new therapeutic avenue to ameliorate the inflammation-associated neurodegenerative conditions.


Assuntos
Proteínas Quinases Dependentes de AMP Cíclico/metabolismo , AMP Cíclico/metabolismo , Endocanabinoides/farmacologia , Microglia/efeitos dos fármacos , Transdução de Sinais/efeitos dos fármacos , Amidoidrolases/deficiência , Amidoidrolases/genética , Animais , Animais Recém-Nascidos , Encéfalo/citologia , Células Cultivadas , Citocinas/genética , Citocinas/metabolismo , Inibidores Enzimáticos/farmacologia , Ácidos Graxos/metabolismo , Lipopolissacarídeos/farmacologia , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Óxido Nítrico Sintase Tipo II/genética , Óxido Nítrico Sintase Tipo II/metabolismo , Ratos , Ratos Wistar
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa