Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 129
Filtrar
1.
Sensors (Basel) ; 24(3)2024 Jan 30.
Artigo em Inglês | MEDLINE | ID: mdl-38339615

RESUMO

As cyber-attacks increase in unencrypted communication environments such as the traditional Internet, protected communication channels based on cryptographic protocols, such as transport layer security (TLS), have been introduced to the Internet. Accordingly, attackers have been carrying out cyber-attacks by hiding themselves in protected communication channels. However, the nature of channels protected by cryptographic protocols makes it difficult to distinguish between normal and malicious network traffic behaviors. This means that traditional anomaly detection models with features from packets extracted a deep packet inspection (DPI) have been neutralized. Recently, studies on anomaly detection using artificial intelligence (AI) and statistical characteristics of traffic have been proposed as an alternative. In this review, we provide a systematic review for AI-based anomaly detection techniques over encrypted traffic. We set several research questions on the review topic and collected research according to eligibility criteria. Through the screening process and quality assessment, 30 research articles were selected with high suitability to be included in the review from the collected literature. We reviewed the selected research in terms of dataset, feature extraction, feature selection, preprocessing, anomaly detection algorithm, and performance indicators. As a result of the literature review, it was confirmed that various techniques used for AI-based anomaly detection over encrypted traffic were used. Some techniques are similar to those used for AI-based anomaly detection over unencrypted traffic, but some technologies are different from those used for unencrypted traffic.

2.
Int J Mol Sci ; 25(11)2024 Jun 06.
Artigo em Inglês | MEDLINE | ID: mdl-38892449

RESUMO

Modified mRNAs (modRNAs) are an emerging delivery method for gene therapy. The success of modRNA-based COVID-19 vaccines has demonstrated that modRNA is a safe and effective therapeutic tool. Moreover, modRNA has the potential to treat various human diseases, including cardiac dysfunction. Acute myocardial infarction (MI) is a major cardiac disorder that currently lacks curative treatment options, and MI is commonly accompanied by fibrosis and impaired cardiac function. Our group previously demonstrated that the matricellular protein CCN5 inhibits cardiac fibrosis (CF) and mitigates cardiac dysfunction. However, it remains unclear whether early intervention of CF under stress conditions is beneficial or more detrimental due to potential adverse effects such as left ventricular (LV) rupture. We hypothesized that CCN5 would alleviate the adverse effects of myocardial infarction (MI) through its anti-fibrotic properties under stress conditions. To induce the rapid expression of CCN5, ModRNA-CCN5 was synthesized and administrated directly into the myocardium in a mouse MI model. To evaluate CCN5 activity, we established two independent experimental schemes: (1) preventive intervention and (2) therapeutic intervention. Functional analyses, including echocardiography and magnetic resonance imaging (MRI), along with molecular assays, demonstrated that modRNA-mediated CCN5 gene transfer significantly attenuated cardiac fibrosis and improved cardiac function in both preventive and therapeutic models, without causing left ventricular rupture or any adverse cardiac remodeling. In conclusion, early intervention in CF by ModRNA-CCN5 gene transfer is an efficient and safe therapeutic modality for treating MI-induced heart failure.


Assuntos
Proteínas de Sinalização Intercelular CCN , Fibrose , Terapia Genética , Infarto do Miocárdio , RNA Mensageiro , Animais , Humanos , Masculino , Camundongos , Proteínas de Sinalização Intercelular CCN/genética , Proteínas de Sinalização Intercelular CCN/metabolismo , Modelos Animais de Doenças , Técnicas de Transferência de Genes , Terapia Genética/métodos , Camundongos Endogâmicos C57BL , Infarto do Miocárdio/terapia , Infarto do Miocárdio/genética , Infarto do Miocárdio/metabolismo , Infarto do Miocárdio/patologia , Miocárdio/metabolismo , Miocárdio/patologia , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Remodelação Ventricular/genética
3.
J Pediatr Hematol Oncol ; 44(2): e424-e427, 2022 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-33735153

RESUMO

Congenital hepatic hemangioma (CHH) is a common benign vascular tumor of the liver, seen in infancy. The clinical manifestations vary from incidental findings to life-threatening complications. The authors present here a case of an infant with massive CHH who developed systemic hypertension because of compression of the right renal artery by the CHH and did not respond to other lines of treatment. After sirolimus therapy, the CHH size decreased and antihypertensive drugs were no longer necessary. In a critical situation, if the embolization and/or steroids do not seem to control the situation, then adding sirolimus may be considered as secondary therapy with good additive effects.


Assuntos
Embolização Terapêutica , Hemangioma , Hipertensão , Neoplasias Hepáticas , Hemangioma/complicações , Hemangioma/tratamento farmacológico , Humanos , Hipertensão/complicações , Hipertensão/tratamento farmacológico , Lactente , Neoplasias Hepáticas/complicações , Neoplasias Hepáticas/tratamento farmacológico , Sirolimo/uso terapêutico
4.
Circ Res ; 124(9): e63-e80, 2019 04 26.
Artigo em Inglês | MEDLINE | ID: mdl-30786847

RESUMO

RATIONALE: SERCA2a, sarco-endoplasmic reticulum Ca2+-ATPase, is a critical determinant of cardiac function. Reduced level and activity of SERCA2a are major features of heart failure. Accordingly, intensive efforts have been made to develop efficient modalities for SERCA2a activation. We showed that the activity of SERCA2a is enhanced by post-translational modification with SUMO1 (small ubiquitin-like modifier 1). However, the roles of other post-translational modifications on SERCA2a are still unknown. OBJECTIVE: In this study, we aim to assess the role of lysine acetylation on SERCA2a function and determine whether inhibition of lysine acetylation can improve cardiac function in the setting of heart failure. METHODS AND RESULTS: The acetylation of SERCA2a was significantly increased in failing hearts of humans, mice, and pigs, which is associated with the reduced level of SIRT1 (sirtuin 1), a class III histone deacetylase. Downregulation of SIRT1 increased the SERCA2a acetylation, which in turn led to SERCA2a dysfunction and cardiac defects at baseline. In contrast, pharmacological activation of SIRT1 reduced the SERCA2a acetylation, which was accompanied by recovery of SERCA2a function and cardiac defects in failing hearts. Lysine 492 (K492) was of critical importance for the regulation of SERCA2a activity via acetylation. Acetylation at K492 significantly reduced the SERCA2a activity, presumably through interfering with the binding of ATP to SERCA2a. In failing hearts, acetylation at K492 appeared to be mediated by p300 (histone acetyltransferase p300), a histone acetyltransferase. CONCLUSIONS: These results indicate that acetylation/deacetylation at K492, which is regulated by SIRT1 and p300, is critical for the regulation of SERCA2a activity in hearts. Pharmacological activation of SIRT1 can restore SERCA2a activity through deacetylation at K492. These findings might provide a novel strategy for the treatment of heart failure.


Assuntos
Insuficiência Cardíaca/metabolismo , Miócitos Cardíacos/metabolismo , ATPases Transportadoras de Cálcio do Retículo Sarcoplasmático/metabolismo , Sirtuína 1/metabolismo , Acetilação , Trifosfato de Adenosina/metabolismo , Animais , Linhagem Celular , Células Cultivadas , Proteína p300 Associada a E1A/metabolismo , Insuficiência Cardíaca/enzimologia , Insuficiência Cardíaca/genética , Humanos , Lisina/genética , Lisina/metabolismo , Masculino , Camundongos Endogâmicos C57BL , Camundongos Knockout , Camundongos Transgênicos , Miócitos Cardíacos/patologia , Processamento de Proteína Pós-Traducional , ATPases Transportadoras de Cálcio do Retículo Sarcoplasmático/genética , Sirtuína 1/genética , Suínos
5.
Int J Mol Sci ; 22(18)2021 Sep 14.
Artigo em Inglês | MEDLINE | ID: mdl-34576109

RESUMO

Various heart diseases cause cardiac remodeling, which in turn leads to ineffective contraction. Although it is an adaptive response to injury, cardiac fibrosis contributes to this remodeling, for which the reactivation of quiescent myofibroblasts is a key feature. In the present study, we investigated the role of the p300/CBP-associated factor (PCAF), a histone acetyltransferase, in the activation of cardiac fibroblasts. An intraperitoneal (i.p.) injection of a high dose (160 mg/kg) of isoproterenol (ISP) induced cardiac fibrosis and reduced the amount of the PCAF in cardiac fibroblasts in the mouse heart. However, the PCAF activity was significantly increased in cardiac fibroblasts, but not in cardiomyocytes, obtained from ISP-administered mice. An in vitro study using human cardiac fibroblast cells recapitulated the in vivo results; an treatment with transforming growth factor-ß1 (TGF-ß1) reduced the PCAF, whereas it activated the PCAF in the fibroblasts. PCAF siRNA attenuated the TGF-ß1-induced increase in and translocation of fibrosis marker proteins. PCAF siRNA blocked TGF-ß1-mediated gel contraction and cell migration. The PCAF directly interacted with and acetylated mothers against decapentaplegic homolog 2 (SMAD2). PCAF siRNA prevented TGF-ß1-induced phosphorylation and the nuclear localization of SMAD2. These results suggest that the increase in PCAF activity during cardiac fibrosis may participate in SMAD2 acetylation and thereby in its activation.


Assuntos
Fibroblastos/metabolismo , Miocárdio/citologia , Proteína Smad2/metabolismo , Fatores de Transcrição de p300-CBP/metabolismo , Acetilação , Actinas/metabolismo , Animais , Movimento Celular , Núcleo Celular/metabolismo , Colágeno Tipo I/metabolismo , Cadeia alfa 1 do Colágeno Tipo I , Fibrose , Humanos , Isoproterenol , Masculino , Metaloproteinases da Matriz/metabolismo , Camundongos Endogâmicos C57BL , Fosforilação , Transporte Proteico , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Fator de Crescimento Transformador beta/metabolismo , Fatores de Transcrição de p300-CBP/genética
6.
J Cell Mol Med ; 24(20): 11768-11778, 2020 10.
Artigo em Inglês | MEDLINE | ID: mdl-32885578

RESUMO

Atrial structural remodelling including atrial hypertrophy and fibrosis is a key mediator of atrial fibrillation (AF). We previously demonstrated that the matricellular protein CCN5 elicits anti-fibrotic and anti-hypertrophic effects in left ventricles under pressure overload. We here determined the utility of CCN5 in ameliorating adverse atrial remodelling and arrhythmias in a murine model of angiotensin II (AngII) infusion. Advanced atrial structural remodelling was induced by AngII infusion in control mice and mice overexpressing CCN5 either through transgenesis (CCN5 Tg) or AAV9-mediated gene transfer (AAV9-CCN5). The mRNA levels of pro-fibrotic and pro-inflammatory genes were markedly up-regulated by AngII infusion, which was significantly normalized by CCN5 overexpression. In vitro studies in isolated atrial fibroblasts demonstrated a marked reduction in AngII-induced fibroblast trans-differentiation in CCN5-treated atria. Moreover, while AngII increased the expression of phosphorylated CaMKII and ryanodine receptor 2 levels in HL-1 cells, these molecular features of AF were prevented by CCN5. Electrophysiological studies in ex vivo perfused hearts revealed a blunted susceptibility of the AAV9-CCN5-treated hearts to rapid atrial pacing-induced arrhythmias and concomitant reversal in AngII-induced atrial action potential prolongation. These data demonstrate the utility of a gene transfer approach targeting CCN5 for reversal of adverse atrial structural and electrophysiological remodelling.


Assuntos
Remodelamento Atrial , Fenômenos Eletrofisiológicos , Átrios do Coração/patologia , Átrios do Coração/fisiopatologia , Peptídeos e Proteínas de Sinalização Intracelular/metabolismo , Angiotensina II , Animais , Arritmias Cardíacas/complicações , Arritmias Cardíacas/patologia , Arritmias Cardíacas/fisiopatologia , Proteína Quinase Tipo 2 Dependente de Cálcio-Calmodulina/metabolismo , Linhagem Celular , Transdiferenciação Celular , Dependovirus/metabolismo , Fibrose , Humanos , Masculino , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , Miócitos Cardíacos/metabolismo , Miócitos Cardíacos/patologia , Miofibroblastos/metabolismo , Miofibroblastos/patologia
7.
Nature ; 508(7497): 531-5, 2014 Apr 24.
Artigo em Inglês | MEDLINE | ID: mdl-24670661

RESUMO

Heart failure is characterized by a debilitating decline in cardiac function, and recent clinical trial results indicate that improving the contractility of heart muscle cells by boosting intracellular calcium handling might be an effective therapy. MicroRNAs (miRNAs) are dysregulated in heart failure but whether they control contractility or constitute therapeutic targets remains speculative. Using high-throughput functional screening of the human microRNAome, here we identify miRNAs that suppress intracellular calcium handling in heart muscle by interacting with messenger RNA encoding the sarcoplasmic reticulum calcium uptake pump SERCA2a (also known as ATP2A2). Of 875 miRNAs tested, miR-25 potently delayed calcium uptake kinetics in cardiomyocytes in vitro and was upregulated in heart failure, both in mice and humans. Whereas adeno-associated virus 9 (AAV9)-mediated overexpression of miR-25 in vivo resulted in a significant loss of contractile function, injection of an antisense oligonucleotide (antagomiR) against miR-25 markedly halted established heart failure in a mouse model, improving cardiac function and survival relative to a control antagomiR oligonucleotide. These data reveal that increased expression of endogenous miR-25 contributes to declining cardiac function during heart failure and suggest that it might be targeted therapeutically to restore function.


Assuntos
Insuficiência Cardíaca/genética , Insuficiência Cardíaca/terapia , MicroRNAs/antagonistas & inibidores , Contração Miocárdica/efeitos dos fármacos , Animais , Cálcio/metabolismo , Dependovirus/genética , Modelos Animais de Doenças , Células HEK293 , Coração/efeitos dos fármacos , Coração/fisiologia , Coração/fisiopatologia , Humanos , Cinética , Masculino , Camundongos , MicroRNAs/análise , MicroRNAs/genética , MicroRNAs/metabolismo , Miocárdio/metabolismo , Miócitos Cardíacos/metabolismo , Oligonucleotídeos Antissenso/genética , Oligonucleotídeos Antissenso/metabolismo , Oligonucleotídeos Antissenso/farmacologia , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Retículo Sarcoplasmático/metabolismo , ATPases Transportadoras de Cálcio do Retículo Sarcoplasmático/genética , ATPases Transportadoras de Cálcio do Retículo Sarcoplasmático/metabolismo , Análise de Sobrevida , Regulação para Cima/genética
8.
J Mol Cell Cardiol ; 129: 58-68, 2019 04.
Artigo em Inglês | MEDLINE | ID: mdl-30771307

RESUMO

The reduced expression of cardiac sarco-endoplasmic reticulum Ca2+ ATPase (SERCA2a) is a hallmark of heart failure. We previously showed that miR-25 is a crucial transcriptional regulator of SERCA2a in the heart. However, the precise mechanism of cardiac miR-25 regulation is largely unknown. Literatures suggested that miR-25 is regulated by the transcriptional co-factor, sine oculis homeobox homolog 1 (Six1), which in turn is epigenetically regulated by polycomb repressive complex 2 (PRC 2) in cardiac progenitor cells. Therefore, we aimed to investigate whether Six1 and PRC2 are indeed involved in the regulation of the miR-25 level in the setting of heart failure. Six1 was up-regulated in the failing hearts of humans and mice. Overexpression of Six1 led to adverse cardiac remodeling, whereas knock-down of Six1 attenuated pressure overload-induced cardiac dysfunction. The adverse effects of Six1 were ameliorated by knock-down of miR-25. The epigenetic repression on the Six1 promoter by PRC2 was significantly reduced in failing hearts. Epigenetic repression of Six1 is relieved through a reduction of PRC2 activity in heart failure. Six1 up-regulates miR-25, which is followed by reduction of cardiac SERCA2a expression. Collectively, these data showed that the PRC2-Six1-miR-25 signaling axis is involved in heart failure. Our finding introduces new insight into potential treatments of heart failure.


Assuntos
Insuficiência Cardíaca/genética , Proteínas de Homeodomínio/metabolismo , MicroRNAs/metabolismo , Complexo Repressor Polycomb 2/metabolismo , Transdução de Sinais , Animais , Epigênese Genética , Técnicas de Silenciamento de Genes , Insuficiência Cardíaca/fisiopatologia , Proteínas de Homeodomínio/genética , Humanos , Camundongos Endogâmicos C57BL , MicroRNAs/genética , Pressão , Regiões Promotoras Genéticas , Regulação para Cima/genética , Remodelação Ventricular/genética
9.
Chem Rev ; 117(13): 8977-9015, 2017 Jul 12.
Artigo em Inglês | MEDLINE | ID: mdl-28060495

RESUMO

Transition-metal-catalyzed activation of C-H and C-C bonds is a challenging area in synthetic organic chemistry. Among various methods to accomplish these processes, the approach using metal-organic cooperative catalytic systems is one of the most promising. In this protocol, organic molecules as well as transition metals act as catalysts to bring about reactions, which proceed with high efficiencies and selectivities. Various metal-organic cooperative catalytic systems developed for C-H and C-C bond activation reactions are discussed in this review. Also discussed are how each metal-organic cooperative catalyst affects the reaction mechanism and what kinds of substrates can be applied in each of the catalytic processes.

10.
J Nanosci Nanotechnol ; 19(3): 1764-1767, 2019 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-30469262

RESUMO

ZnO nanopowders were prepared by a solution combustion method (SCM). The SCM ZnO nanopowders were heat-treated at 200, 400, 500, or 700 °C for 30 min in air and the photoluminescence (PL) of the nanopowders was evaluated. Two strong PL emission peaks are generally recognized as the unique PL signature of ZnO, one is from the band-edge emission and the other corresponds to green emission. The green emission is derived from crystalline defects, and is a critical obstacle for the electrooptical applications of ZnO. Surprisingly, the PL spectra of the SCM ZnO powders showed a single sharp peak near 390 nm. Furthermore, the intensity of this blue emission doubled when the synthesized ZnO powder was heat-treated at 400 °C. The green emission appeared for the sample treated at 500 °C, and was the highest for that treated at 700 °C. To comfirm the photocatalytic activity of the ZnO powder heat-treated at 400 °C, the removal of Ag ions from a used photofilm developer was evaluated, with complete removal within 10 min. The removal of the Ag ions by the ZnO powder heat-treated at 400 °C was more than two orders of magnitude faster than that achieved with the SCM ZnO powder. The relation between PL and photocatalytic activity was explained in terms of recombination of the photogenerated electrons. These results might be very useful for highly efficient photocatalyst applications.

11.
Int J Cancer ; 143(10): 2458-2469, 2018 11 15.
Artigo em Inglês | MEDLINE | ID: mdl-30070361

RESUMO

Insulin and insulin-like growth factor (IGF)-1 signaling in the thyroid are thought to be permissive for the coordinated regulation by thyroid-stimulating hormone (TSH) of thyrocyte proliferation and hormone production. However, the integrated role of insulin receptor (IR) and IGF-1 receptor (IGF-1R) in thyroid development and function has not been explored. Here, we generated thyrocyte-specific IR and IGF-1R double knockout (DTIRKO) mice to precisely evaluate the coordinated functions of these receptors in the thyroid of neonates and adults. Neonatal DTIRKO mice displayed smaller thyroids, paralleling defective folliculogenesis associated with repression of the thyroid-specific transcription factor Foxe1. By contrast, at postnatal day 14, absence of IR and IGF-1R paradoxically induced thyrocyte proliferation, which was mediated by mTOR-dependent signaling pathways. Furthermore, we found elevated production of TSH during the development of follicular hyperplasia at 8 weeks of age. By 50 weeks, all DTIRKO mice developed papillary thyroid carcinoma (PTC)-like lesions that correlated with induction of the ErbB pathway. Taken together, these data define a critical role for IR and IGF-1R in neonatal thyroid folliculogenesis. They also reveal an important reciprocal relationship between IR/IGF-1R and TSH/ErbB signaling in the pathogenesis of thyroid follicular hyperplasia and, possibly, of papillary carcinoma.


Assuntos
Receptores ErbB/metabolismo , Receptor IGF Tipo 1/deficiência , Receptor de Insulina/deficiência , Câncer Papilífero da Tireoide/metabolismo , Células Epiteliais da Tireoide/metabolismo , Neoplasias da Glândula Tireoide/metabolismo , Animais , Humanos , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Receptor IGF Tipo 1/genética , Receptor IGF Tipo 1/metabolismo , Receptor de Insulina/genética , Receptor de Insulina/metabolismo , Transdução de Sinais , Câncer Papilífero da Tireoide/patologia , Células Epiteliais da Tireoide/patologia , Neoplasias da Glândula Tireoide/patologia , Tireotropina/biossíntese , Tireotropina/metabolismo
12.
Biochim Biophys Acta Mol Basis Dis ; 1864(4 Pt A): 1183-1191, 2018 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-29378301

RESUMO

While deletion of Akt1 results in a smaller heart size and Akt2-/- mice are mildly insulin resistant, Akt1-/-/Akt2-/- mice exhibit perinatal lethality, indicating a large degree of functional overlap between the isoforms of the serine/threonine kinase Akt. The present study aimed to determine the cooperative contribution of Akt1 and Akt2 on the structure and contractile function of adult hearts. To generate an inducible, cardiomyocyte-restricted Akt2 knockout (KO) model, Akt2flox/flox mice were crossed with tamoxifen-inducible MerCreMer transgenic (MCM) mice and germline Akt1-/- mice to generate the following genotypes:Akt1+/+; Akt2flox/flox (WT), Akt2flox/flox; α-MHC-MCM (iAkt2 KO), Akt1-/-, and Akt1-/-; Akt2flox/flox; α-MHC-MCM mice (Akt1-/-/iAkt2 KO). At 28 days after the first tamoxifen injection, Akt1-/-/iAkt2 KO mice developed contractile dysfunction paralleling increased atrial and brain natriuretic peptide (ANP and BNP) levels, and repressed mitochondrial gene expression. Neither cardiac fibrosis nor apoptosis were detected in Akt1-/-/iAkt2 KO hearts. To explore potential molecular mechanisms for contractile dysfunction, we investigated myocardial microstructure before the onset of heart failure. At 3 days after the first tamoxifen injection, Akt1-/-/iAkt2 KO hearts showed decreased expression of connexin43 (Cx43) and connexin-interacting protein zonula occludens-1 (ZO-1). Furthermore, Akt1/2 silencing significantly decreased both Cx43 and ZO-1 expression in cultured neonatal rat cardiomyocytes in concert with reduced beating frequency. Akt1 and Akt2 are required to maintain cardiac contraction. Loss of Akt signaling disrupts gap junction protein, which might precipitate early contractile dysfunction prior to heart failure in the absence of myocardial remodeling, such as hypertrophy, fibrosis, or cell death.


Assuntos
Cardiomiopatias/metabolismo , Conexina 43/metabolismo , Contração Miocárdica , Miocárdio/metabolismo , Miócitos Cardíacos/metabolismo , Proteínas Proto-Oncogênicas c-akt/deficiência , Proteína da Zônula de Oclusão-1/metabolismo , Animais , Fator Natriurético Atrial/genética , Fator Natriurético Atrial/metabolismo , Cardiomiopatias/genética , Cardiomiopatias/patologia , Conexina 43/genética , Fibrose , Camundongos , Camundongos Knockout , Miocárdio/patologia , Miócitos Cardíacos/patologia , Peptídeo Natriurético Encefálico/genética , Peptídeo Natriurético Encefálico/metabolismo , Ratos , Proteína da Zônula de Oclusão-1/genética
13.
Biochem Biophys Res Commun ; 485(4): 807-813, 2017 04 15.
Artigo em Inglês | MEDLINE | ID: mdl-28257842

RESUMO

Excessive generation of reactive oxygen species (ROS) is one of the main causes of myocardial ischemia-reperfusion (I/R) injury. In this study, we investigated the role of protein kinase C-interacting cousin of thioredoxin (PICOT; Grx3) during myocardial I/R using PICOT transgenic (TG) and knockdown (KD) mice. Infarction and apoptosis were attenuated in PICOT TG mice but exacerbated in PICOT KD mice upon I/R. In parallel, I/R-induced generation of ROS was attenuated in PICOT TG mice but exacerbated in PICOT KD mice. Angiotensin II (AngII)-mediated increases in ROS and free iron levels were also attenuated in cardiomyocytes isolated from PICOT TG mice but exacerbated in cardiomyocytes from PICOT KD mice. Accordingly, H2O2-mediated cell death was attenuated in cardiomyocytes isolated from PICOT TG mice but exacerbated in cardiomyocytes from PICOT KD mice. Taken together, these data show that PICOT alleviates myocardial I/R injury by regulating intracellular ROS and free iron levels. We suggest that PICOT presents a novel therapeutic strategy for myocardial I/R injury.


Assuntos
Proteínas de Transporte/metabolismo , Espaço Intracelular/metabolismo , Traumatismo por Reperfusão Miocárdica/metabolismo , Miócitos Cardíacos/metabolismo , Espécies Reativas de Oxigênio/metabolismo , Angiotensina II/farmacologia , Animais , Proteínas de Transporte/genética , Sobrevivência Celular/efeitos dos fármacos , Sobrevivência Celular/genética , Células Cultivadas , Relação Dose-Resposta a Droga , Peróxido de Hidrogênio/farmacologia , Espaço Intracelular/efeitos dos fármacos , Ferro/metabolismo , Masculino , Camundongos Knockout , Camundongos Transgênicos , Microscopia de Fluorescência , Traumatismo por Reperfusão Miocárdica/genética , Miócitos Cardíacos/citologia , Miócitos Cardíacos/efeitos dos fármacos , Oxidantes/farmacologia , Proteína Dissulfeto Redutase (Glutationa)
14.
Nature ; 477(7366): 601-5, 2011 Sep 07.
Artigo em Inglês | MEDLINE | ID: mdl-21900893

RESUMO

The calcium-transporting ATPase ATP2A2, also known as SERCA2a, is a critical ATPase responsible for Ca(2+) re-uptake during excitation-contraction coupling. Impaired Ca(2+) uptake resulting from decreased expression and reduced activity of SERCA2a is a hallmark of heart failure. Accordingly, restoration of SERCA2a expression by gene transfer has proved to be effective in improving cardiac function in heart-failure patients, as well as in animal models. The small ubiquitin-related modifier (SUMO) can be conjugated to lysine residues of target proteins, and is involved in many cellular processes. Here we show that SERCA2a is SUMOylated at lysines 480 and 585 and that this SUMOylation is essential for preserving SERCA2a ATPase activity and stability in mouse and human cells. The levels of SUMO1 and the SUMOylation of SERCA2a itself were greatly reduced in failing hearts. SUMO1 restitution by adeno-associated-virus-mediated gene delivery maintained the protein abundance of SERCA2a and markedly improved cardiac function in mice with heart failure. This effect was comparable to SERCA2A gene delivery. Moreover, SUMO1 overexpression in isolated cardiomyocytes augmented contractility and accelerated Ca(2+) decay. Transgene-mediated SUMO1 overexpression rescued cardiac dysfunction induced by pressure overload concomitantly with increased SERCA2a function. By contrast, downregulation of SUMO1 using small hairpin RNA (shRNA) accelerated pressure-overload-induced deterioration of cardiac function and was accompanied by decreased SERCA2a function. However, knockdown of SERCA2a resulted in severe contractile dysfunction both in vitro and in vivo, which was not rescued by overexpression of SUMO1. Taken together, our data show that SUMOylation is a critical post-translational modification that regulates SERCA2a function, and provide a platform for the design of novel therapeutic strategies for heart failure.


Assuntos
Insuficiência Cardíaca/metabolismo , Proteína SUMO-1/metabolismo , ATPases Transportadoras de Cálcio do Retículo Sarcoplasmático/metabolismo , Sumoilação , Animais , Células HEK293 , Insuficiência Cardíaca/fisiopatologia , Humanos , Lisina/metabolismo , Camundongos , Ratos , Ratos Sprague-Dawley , Proteína SUMO-1/genética , Sus scrofa
15.
Circ Res ; 114(7): 1133-43, 2014 Mar 28.
Artigo em Inglês | MEDLINE | ID: mdl-24526703

RESUMO

RATIONALE: Histone deacetylases (HDACs) are closely involved in cardiac reprogramming. Although the functional roles of class I and class IIa HDACs are well established, the significance of interclass crosstalk in the development of cardiac hypertrophy remains unclear. OBJECTIVE: Recently, we suggested that casein kinase 2α1-dependent phosphorylation of HDAC2 leads to enzymatic activation, which in turn induces cardiac hypertrophy. Here we report an alternative post-translational activation mechanism of HDAC2 that involves acetylation of HDAC2 mediated by p300/CBP-associated factor/HDAC5. METHODS AND RESULTS: Hdac2 was acetylated in response to hypertrophic stresses in both cardiomyocytes and a mouse model. Acetylation was reduced by a histone acetyltransferase inhibitor but was increased by a nonspecific HDAC inhibitor. The enzymatic activity of Hdac2 was positively correlated with its acetylation status. p300/CBP-associated factor bound to Hdac2 and induced acetylation. The HDAC2 K75 residue was responsible for hypertrophic stress-induced acetylation. The acetylation-resistant Hdac2 K75R showed a significant decrease in phosphorylation on S394, which led to the loss of intrinsic activity. Hdac5, one of class IIa HDACs, directly deacetylated Hdac2. Acetylation of Hdac2 was increased in Hdac5-null mice. When an acetylation-mimicking mutant of Hdac2 was infected into cardiomyocytes, the antihypertrophic effect of either nuclear tethering of Hdac5 with leptomycin B or Hdac5 overexpression was reduced. CONCLUSIONS: Taken together, our results suggest a novel mechanism by which the balance of HDAC2 acetylation is regulated by p300/CBP-associated factor and HDAC5 in the development of cardiac hypertrophy.


Assuntos
Cardiomegalia/metabolismo , Histona Desacetilases/metabolismo , Fatores de Transcrição de p300-CBP/metabolismo , Acetilação , Animais , Inibidores de Histona Desacetilases/farmacologia , Histona Desacetilases/genética , Camundongos , Mutação , Miócitos Cardíacos/efeitos dos fármacos , Miócitos Cardíacos/enzimologia , Miócitos Cardíacos/metabolismo , Fosforilação , Ratos , Ratos Sprague-Dawley , Fatores de Transcrição de p300-CBP/genética
16.
J Cell Biochem ; 116(11): 2589-97, 2015 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-25903991

RESUMO

MicroRNAs (miRNAs) play essential roles in various cellular processes including proliferation and differentiation. In this study, we identified miRNA-195a (miR-195a) as a regulator of adipocyte differentiation. Differential expression of miR-195a in preadipocytes and adipocytes suggests its role in lipid accumulation and adipocyte differentiation. Forced expression of miR-195a mimics suppressed lipid accumulation and inhibited expression of adipocyte markers such as PPARγ and aP2 in 3T3-L1 and C3H10T1/2 cells. Conversely, downregulation of miR-195a by anti-miR-195a increased lipid accumulation and expression of adipocyte markers. Target prediction analysis suggested zinc finger protein 423 (Zfp423), a preadipogenic determinator, as a potential gene recognized by miR-195a. In line with this, mimicked expression of miR-195a reduced the expression of Zfp423, whereas anti-miR-195a increased its expression. Predicted targeting sequences in Zfp423 3'UTR, but not mutated sequences fused to luciferase, were regulated by miR-195a. Ectopic Zfp423 expression in 3T3-L1 cells increased lipid accumulation and expression of adipocyte markers, consistent with the observation that miR-195a targets Zfp423, resulting in suppressed adipocyte differentiation. In addition, miR-195a and Zfp423 were inversely correlated in obese fat tissues, raising the possibility of miRNA's role in obesity. Together, our data show that miR-195a is an anti-adipogenic regulator, which acts by targeting Zfp423, and further suggest the roles of miR-195a in obesity and metabolic diseases.


Assuntos
Adipócitos/citologia , Proteínas de Ligação a DNA/genética , MicroRNAs/genética , MicroRNAs/metabolismo , Obesidade/metabolismo , Fatores de Transcrição/genética , Regiões 3' não Traduzidas , Células 3T3-L1 , Adipócitos/metabolismo , Animais , Diferenciação Celular , Proteínas de Ligação a DNA/metabolismo , Dieta Hiperlipídica/efeitos adversos , Regulação da Expressão Gênica , Metabolismo dos Lipídeos , Camundongos , Obesidade/etiologia , Obesidade/genética , Regiões Promotoras Genéticas , Fatores de Transcrição/metabolismo
17.
Development ; 139(23): 4330-40, 2012 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-23132243

RESUMO

Genomic reprogramming factors in the cytoplasm of germinal vesicle (GV) stage oocytes have been shown to improve the efficiency of producing cloned mouse offspring through the exposure of nuclei to a GV cytoplasmic extract prior to somatic cell nuclear transfer (SCNT) to enucleated oocytes. Here, we developed an extract of GV stage pig oocytes (GVcyto-extract) to investigate epigenetic reprogramming events in treated somatic cell nuclei. This extract induced differentiation-associated changes in fibroblasts, resulting in cells that exhibit pluripotent stem cell-like characteristics and that redifferentiate into three primary germ cell layers both in vivo and in vitro. The GVcyto-extract treatment induced large numbers of high-quality SCNT-generated blastocysts, with methylation and acetylation of H3-K9 and expression of Oct4 and Nanog at levels similar to in vitro fertilized embryos. Thus, GVcyto-extract could elicit differentiation plasticity in treated fibroblasts, and SCNT-mediated reprogramming reset the epigenetic state in treated cells more efficiently than in untreated cells. In summary, we provide evidence for the generation of stem-like cells from differentiated somatic cells by treatment with porcine GVcyto-extract.


Assuntos
Extratos Celulares/farmacologia , Reprogramação Celular , Técnicas de Transferência Nuclear , Oócitos , Animais , Blastocisto/efeitos dos fármacos , Diferenciação Celular/efeitos dos fármacos , Núcleo Celular/efeitos dos fármacos , Núcleo Celular/genética , Núcleo Celular/metabolismo , Epigênese Genética , Fibroblastos/efeitos dos fármacos , Histonas/metabolismo , Proteínas de Homeodomínio/biossíntese , Células-Tronco Pluripotentes Induzidas , Metilação/efeitos dos fármacos , Fator 3 de Transcrição de Octâmero/biossíntese , Fator 3 de Transcrição de Octâmero/genética , Células-Tronco Pluripotentes , Suínos
18.
J Virol ; 88(1): 154-63, 2014 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-24131721

RESUMO

Hepatitis B virus (HBV) synthesizes its DNA genome through reverse transcription, which is catalyzed by viral polymerase (Pol). Previous studies suggested that the RNase H domain of hepadnaviral Pol may contribute to multiple steps of the viral genome replication, such as RNA encapsidation and viral DNA synthesis. However, specific residues of the RNase H domain that contribute to viral reverse transcription have not been determined. Therefore, we employed charged-to-alanine scanning mutagenesis to generate a set of single-substitution mutants of the RNase H domain and then analyzed their ability to support viral reverse transcription. Southern blot analysis showed that three mutants (R703A, D777A, and R781A mutants) yielded significantly reduced amounts of viral DNAs. However, none of these mutants were defective in RNA encapsidation. The data indicated that in the R703A and D777A mutants, minus-strand DNA synthesis was incomplete due to loss of catalytic activity of RNase H. In contrast, in the R781A mutant, the minus-strand DNA synthesis was near complete to some extent, while the plus-strand DNA synthesis (i.e., relaxed circular DNA) was severely impaired due to the defect in RNase H activity. Overall, our analysis revealed that three charged residues of the HBV Pol RNase H domain contribute to the catalysis of RNase H in removing the RNA template, but not in the RNA encapsidation.


Assuntos
Arginina/metabolismo , Ácido Aspártico/metabolismo , DNA Viral/biossíntese , Vírus da Hepatite B/enzimologia , DNA Polimerase Dirigida por RNA/metabolismo , Ribonuclease H/metabolismo , Células Hep G2 , Vírus da Hepatite B/genética , Humanos , Mutação , DNA Polimerase Dirigida por RNA/química , Ribonuclease H/química , Ribonuclease H/genética
19.
J Cell Mol Med ; 18(5): 875-84, 2014 May.
Artigo em Inglês | MEDLINE | ID: mdl-24533641

RESUMO

Retinal neovascularization in retinopathy of prematurity (ROP) is the most common cause of blindness for children. Despite evidence that hypoxia inducible factor (HIF)-1α -VEGF axis is associated with the pathogenesis of ROP, the inhibitors of HIF-1α have not been established as a therapeutic target in the control of ROP pathophysiology. We investigated the hypothesis that degradation of HIF-1α as a master regulator of angiogenesis in hypoxic condition, using ß-lapachone, would confer protection against hypoxia-induced retinopathy without affecting physiological vascular development in mice with oxygen-induced retinopathy (OIR), an animal model of ROP. The effects of ß-lapachone were examined after intraocular injection in mice with OIR. Intraocular administration of ß-lapachone resulted in significant reduction in hypoxia-induced retinal neovascularization without retinal toxicity or perturbation of developmental retinal angiogenesis. Our results demonstrate that HIF-1α-mediated VEGF expression in OIR is associated with pathological neovascularization, not physiological angiogenesis. Thus, strategies blocking HIF-1α in the developing eye in the pathological hypoxia could serve as a novel therapeutic target for ROP.


Assuntos
Subunidade alfa do Fator 1 Induzível por Hipóxia/metabolismo , Naftoquinonas/uso terapêutico , Neovascularização Retiniana/tratamento farmacológico , Neovascularização Retiniana/patologia , Animais , Apoptose/efeitos dos fármacos , Astrócitos/efeitos dos fármacos , Astrócitos/metabolismo , Astrócitos/patologia , Hipóxia Celular/efeitos dos fármacos , Células Endoteliais/efeitos dos fármacos , Células Endoteliais/patologia , Humanos , Injeções Intraoculares , Camundongos Endogâmicos C57BL , Naftoquinonas/farmacologia , Oxigênio , Proteólise/efeitos dos fármacos , Retina/efeitos dos fármacos , Retina/patologia , Neovascularização Retiniana/metabolismo , Transcrição Gênica/efeitos dos fármacos , Fator A de Crescimento do Endotélio Vascular/genética , Fator A de Crescimento do Endotélio Vascular/metabolismo
20.
Biochem Biophys Res Commun ; 447(4): 649-54, 2014 May 16.
Artigo em Inglês | MEDLINE | ID: mdl-24755080

RESUMO

Cereblon (CRBN) was originally identified as a target protein for a mild type of mental retardation in humans. However, recent studies showed that CRBN acts as a negative regulator of AMP-activated protein kinase (AMPK) by binding directly to the AMPK catalytic subunit. Because AMPK is implicated in myocardial ischemia-reperfusion (I-R) injury, we reasoned that CRBN might play a role in the pathology of myocardial I-R through regulation of AMPK activity. To test this hypothesis, wild-type (WT) and crbn knockout (KO) mice were subjected to I-R (complete ligation of the coronary artery for 30 min followed by 24h of reperfusion). We found significantly smaller infarct sizes and less fibrosis in the hearts of KO mice than in those of WT mice. Apoptosis was also significantly reduced in the KO mice compared with that in WT mice, as shown by the reduced numbers of TUNEL-positive cells. In parallel, AMPK activity remained at normal levels in KO mice undergoing I-R, whereas it was significantly reduced in WT mice under the same conditions. In rat neonatal cardiomyocytes, overexpression of CRBN significantly reduced AMPK activity, as demonstrated by reductions in both phosphorylation levels of AMPK and the expression of its downstream target genes. Collectively, these data demonstrate that CRBN plays an important role in myocardial I-R injury through modulation of AMPK activity.


Assuntos
Proteínas de Transporte/metabolismo , Traumatismo por Reperfusão Miocárdica/metabolismo , Traumatismo por Reperfusão Miocárdica/prevenção & controle , Proteínas do Tecido Nervoso/metabolismo , Proteínas Quinases Ativadas por AMP/metabolismo , Proteases Dependentes de ATP , Proteínas Adaptadoras de Transdução de Sinal , Animais , Apoptose , Proteínas de Transporte/genética , Células Cultivadas , Expressão Gênica , Humanos , Camundongos , Camundongos Knockout , Traumatismo por Reperfusão Miocárdica/patologia , Miócitos Cardíacos/metabolismo , Miócitos Cardíacos/patologia , Proteínas do Tecido Nervoso/deficiência , Proteínas do Tecido Nervoso/genética , Peptídeo Hidrolases/genética , Peptídeo Hidrolases/metabolismo , Fosforilação , Ratos , Complexos Ubiquitina-Proteína Ligase , Ubiquitina-Proteína Ligases , Regulação para Cima
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa