Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Genes Dev ; 25(10): 1091-104, 2011 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-21511873

RESUMO

Communication between Mre11 and Rad50 in the MR complex is critical for the sensing, damage signaling, and repair of DNA double-strand breaks. To understand the basis for interregulation between Mre11 and Rad50, we determined the crystal structure of the Mre11-Rad50-ATPγS complex. Mre11 brings the two Rad50 molecules into close proximity and promotes ATPase activity by (1) holding the coiled-coil arm of Rad50 through its C-terminal domain, (2) stabilizing the signature motif and P loop of Rad50 via its capping domain, and (3) forming a dimer through the nuclease domain. ATP-bound Rad50 negatively regulates the nuclease activity of Mre11 by blocking the active site of Mre11. Hydrolysis of ATP disengages Rad50 molecules, and, concomitantly, the flexible linker that connects the C-terminal domain and the capping domain of Mre11 undergoes substantial conformational change to relocate Rad50 and unmask the active site of Mre11. Our structural and biochemical data provide insights into understanding the interplay between Mre11 and Rad50 to facilitate efficient DNA damage repair.


Assuntos
Trifosfato de Adenosina/análogos & derivados , Proteínas Arqueais/química , Endodesoxirribonucleases/química , Exodesoxirribonucleases/química , Mathanococcus/química , Mathanococcus/metabolismo , Modelos Moleculares , Trifosfato de Adenosina/química , Trifosfato de Adenosina/metabolismo , Motivos de Aminoácidos , Proteínas Arqueais/metabolismo , Sítios de Ligação , Endodesoxirribonucleases/metabolismo , Exodesoxirribonucleases/metabolismo , Regulação da Expressão Gênica em Archaea , Hidrólise , Mathanococcus/enzimologia , Mathanococcus/genética , Ligação Proteica , Estrutura Quaternária de Proteína , Estrutura Terciária de Proteína
2.
EMBO J ; 33(20): 2422-35, 2014 Oct 16.
Artigo em Inglês | MEDLINE | ID: mdl-25107472

RESUMO

The Mre11-Rad50-Nbs1 (MRN) complex plays important roles in sensing DNA damage, as well as in resecting and tethering DNA ends, and thus participates in double-strand break repair. An earlier structure of Mre11 bound to a short duplex DNA molecule suggested that each Mre11 in a dimer recognizes one DNA duplex to bridge two DNA ends at a short distance. Here, we provide an alternative DNA recognition model based on the structures of Methanococcus jannaschii Mre11 (MjMre11) bound to longer DNA molecules, which may more accurately reflect a broken chromosome. An extended stretch of B-form DNA asymmetrically runs across the whole dimer, with each end of this DNA molecule being recognized by an individual Mre11 monomer. DNA binding induces rigid-body rotation of the Mre11 dimer, which could facilitate melting of the DNA end and its juxtaposition to an active site of Mre11. The identified Mre11 interface binding DNA duplex ends is structurally conserved and shown to functionally contribute to efficient resection, non-homologous end joining, and tolerance to DNA-damaging agents when other resection enzymes are absent. Together, the structural, biochemical, and genetic findings presented here offer new insights into how Mre11 recognizes damaged DNA and facilitates DNA repair.


Assuntos
Proteínas Arqueais/química , Quebras de DNA de Cadeia Dupla , Reparo do DNA por Junção de Extremidades , Endodesoxirribonucleases/química , Exodesoxirribonucleases/química , Methanocaldococcus/enzimologia , Modelos Moleculares , Sequência de Aminoácidos , Proteínas Arqueais/genética , Proteínas Arqueais/metabolismo , Cristalografia por Raios X , Análise Mutacional de DNA , DNA Arqueal/genética , DNA Arqueal/metabolismo , Dimerização , Endodesoxirribonucleases/genética , Endodesoxirribonucleases/metabolismo , Exodesoxirribonucleases/genética , Exodesoxirribonucleases/metabolismo , Methanocaldococcus/química , Methanocaldococcus/genética , Modelos Estruturais , Dados de Sequência Molecular , Ligação Proteica , Alinhamento de Sequência
3.
Mol Cells ; 26(2): 181-5, 2008 Aug 31.
Artigo em Inglês | MEDLINE | ID: mdl-18677097

RESUMO

The effects of calcitonin gene-related peptide (CGRP) on pacemaker currents in cultured interstitial cells of Cajal (ICC) from the mouse small intestine were investigated using the whole-cell patch clamp technique at 30 degrees . Under voltage clamping at a holding potential of -70 mV, CGRP decreased the amplitude and frequency of pacemaker currents and activated outward resting currents. These effects were blocked by intracellular GDPbetaS, a G-protein inhibitor and glibenclamide, a specific ATP-sensitive K(+) channels blocker. During current clamping, CGRP hyperpolarized the membrane and this effect was antagonized by glibenclamide. Pretreatment with SQ-22536 (an adenylate cyclase inhibitor) or naproxen (a cyclooxygenase inhibitor) did not block the CGRP-induced effects, whereas pretreatment with ODQ (a guanylate cyclase inhibitor) or L-NAME (an inhibitor of nitric oxide synthase) did. In conclusion, CGRP inhibits pacemaker currents in ICC by generating nitric oxide via G-protein activation and so activating ATP-sensitive K(+) channels. Nitric oxide- and guanylate cyclase- dependent pathways are involved in these effects.


Assuntos
Peptídeo Relacionado com Gene de Calcitonina/fisiologia , GMP Cíclico/farmacologia , Intestino Delgado/fisiologia , Canais KATP/fisiologia , Óxido Nítrico/farmacologia , Adenina/análogos & derivados , Adenina/farmacologia , Animais , Células Cultivadas , Feminino , Guanilato Ciclase/antagonistas & inibidores , Intestino Delgado/citologia , Canais KATP/efeitos dos fármacos , Masculino , Camundongos , Camundongos Endogâmicos BALB C , NG-Nitroarginina Metil Éster/farmacologia , Oxidiazóis/farmacologia , Técnicas de Patch-Clamp , Quinoxalinas/farmacologia
4.
Nat Struct Mol Biol ; 24(3): 248-257, 2017 03.
Artigo em Inglês | MEDLINE | ID: mdl-28134932

RESUMO

The Rad50 hook interface is crucial for assembly and various functions of the Mre11 complex. Previous analyses suggested that Rad50 molecules interact within (intracomplex) or between (intercomplex) dimeric complexes. In this study, we determined the structure of the human Rad50 hook and coiled-coil domains. The data suggest that the predominant structure is the intracomplex, in which the two parallel coiled coils proximal to the hook form a rod shape, and that a novel interface within the coiled-coil domains of Rad50 stabilizes the interaction of Rad50 protomers in the dimeric assembly. In yeast, removal of the coiled-coil interface compromised Tel1 activation without affecting DNA repair, while simultaneous disruption of that interface and the hook phenocopied a null mutation. The results demonstrate that the hook and coiled-coil interfaces coordinately promote intracomplex assembly and define the intracomplex as the functional form of the Mre11 complex.


Assuntos
Enzimas Reparadoras do DNA/química , Enzimas Reparadoras do DNA/metabolismo , Proteínas de Ligação a DNA/química , Proteínas de Ligação a DNA/metabolismo , Células Eucarióticas/metabolismo , Multimerização Proteica , Hidrolases Anidrido Ácido , Sequência de Aminoácidos , Pontos de Checagem do Ciclo Celular , Cristalografia por Raios X , Quebras de DNA de Cadeia Dupla , Reparo do DNA , Transferência Ressonante de Energia de Fluorescência , Humanos , Meiose , Modelos Biológicos , Proteínas Mutantes/química , Proteínas Mutantes/metabolismo , Domínios Proteicos , Estrutura Secundária de Proteína , Saccharomyces cerevisiae/metabolismo , Transdução de Sinais , Soluções , Zinco/metabolismo
5.
Structure ; 19(11): 1591-602, 2011 Nov 09.
Artigo em Inglês | MEDLINE | ID: mdl-22078559

RESUMO

Mre11 plays an important role in repairing damaged DNA by cleaving broken ends and by providing a platform for other DNA repair proteins. Various Mre11 mutations have been identified in several types of cancer. We have determined the crystal structure of the human Mre11 core (hMre11), which contains the nuclease and capping domains. hMre11 dimerizes through the interfaces between loop ß3-α3 from one Mre11 and loop ß4-ß5 from another Mre11, and between loop α2-ß3 from one Mre11 and helices α2 and α3 from another Mre11, and assembles into a completely different dimeric architecture compared with bacterial or archaeal Mre11 homologs. Nbs1 binds to the region containing loop α2-ß3 which participates in dimerization. The hMre11 structure in conjunction with biochemical analyses reveals that many tumorigenic mutations are primarily associated with Nbs1 binding and partly with nuclease activities, providing a framework for understanding how mutations inactivate Mre11.


Assuntos
Proteínas de Ligação a DNA/química , Mutação de Sentido Incorreto , Motivos de Aminoácidos , Domínio Catalítico , Proteínas de Ciclo Celular/química , Proteínas de Ciclo Celular/metabolismo , Transformação Celular Neoplásica/genética , Cristalografia por Raios X , DNA/química , Proteínas de Ligação a DNA/genética , Proteínas de Ligação a DNA/metabolismo , Dissulfetos , Humanos , Ligação de Hidrogênio , Proteína Homóloga a MRE11 , Modelos Moleculares , Proteínas Nucleares/química , Proteínas Nucleares/metabolismo , Ligação Proteica , Domínios e Motivos de Interação entre Proteínas , Estrutura Quaternária de Proteína , Proteínas Recombinantes/química , Proteínas Recombinantes/metabolismo , Homologia Estrutural de Proteína
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa