Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 40
Filtrar
1.
Appl Environ Microbiol ; 90(6): e0229323, 2024 Jun 18.
Artigo em Inglês | MEDLINE | ID: mdl-38786361

RESUMO

Bacteria shape interactions between hosts and fungal pathogens. In some cases, bacteria associated with fungi are essential for pathogen virulence. In other systems, host-associated microbiomes confer resistance against fungal pathogens. We studied an aphid-specific entomopathogenic fungus called Pandora neoaphidis in the context of both host and pathogen microbiomes. Aphids host several species of heritable bacteria, some of which confer resistance against Pandora. We first found that spores that emerged from aphids that harbored protective bacteria were less virulent against subsequent hosts and did not grow on plate media. We then used 16S amplicon sequencing to study the bacterial microbiome of fungal mycelia and spores during plate culturing and host infection. We found that the bacterial community is remarkably stable in culture despite dramatic changes in pathogen virulence. Last, we used an experimentally transformed symbiont of aphids to show that Pandora can acquire host-associated bacteria during infection. Our results uncover new roles for bacteria in the dynamics of aphid-pathogen interactions and illustrate the importance of the broader microbiological context in studies of fungal pathogenesis. IMPORTANCE: Entomopathogenic fungi play important roles in the population dynamics of many insect species. Understanding the factors shaping entomopathogen virulence is critical for agricultural management and for the use of fungi in pest biocontrol. We show that heritable bacteria in aphids, which confer protection to their hosts against fungal entomopathogens, influence virulence against subsequent hosts. Aphids reproduce asexually and are typically surrounded by genetically identical offspring, and thus these effects likely shape the dynamics of fungal disease in aphid populations. Furthermore, fungal entomopathogens are known to rapidly lose virulence in lab culture, complicating their laboratory use. We show that this phenomenon is not driven by changes in the associated bacterial microbiome. These results contribute to our broader understanding of the aphid model system and shed light on the biology of the Entomophthorales-an important but understudied group of fungi.


Assuntos
Afídeos , Microbiota , Animais , Afídeos/microbiologia , Virulência , Interações Hospedeiro-Patógeno , Entomophthorales/patogenicidade , Entomophthorales/fisiologia , Entomophthorales/genética , Bactérias/genética , Bactérias/classificação , Bactérias/patogenicidade , Bactérias/isolamento & purificação , Simbiose , Esporos Fúngicos/crescimento & desenvolvimento , Esporos Fúngicos/patogenicidade
2.
BMC Genomics ; 24(1): 636, 2023 Oct 24.
Artigo em Inglês | MEDLINE | ID: mdl-37875824

RESUMO

BACKGROUND: Insects are an important reservoir of viral biodiversity, but the vast majority of viruses associated with insects have not been discovered. Recent studies have employed high-throughput RNA sequencing, which has led to rapid advances in our understanding of insect viral diversity. However, insect genomes frequently contain transcribed endogenous viral elements (EVEs) with significant homology to exogenous viruses, complicating the use of RNAseq for viral discovery. METHODS: In this study, we used a multi-pronged sequencing approach to study the virome of an important agricultural pest and prolific vector of plant pathogens, the potato aphid Macrosiphum euphorbiae. We first used rRNA-depleted RNAseq to characterize the microbes found in individual insects. We then used PCR screening to measure the frequency of two heritable viruses in a local aphid population. Lastly, we generated a quality draft genome assembly for M. euphorbiae using Illumina-corrected Nanopore sequencing to identify transcriptionally active EVEs in the host genome. RESULTS: We found reads from two insect-specific viruses (a Flavivirus and an Ambidensovirus) in our RNAseq data, as well as a parasitoid virus (Bracovirus), a plant pathogenic virus (Tombusvirus), and two phages (Acinetobacter and APSE). However, our genome assembly showed that part of the 'virome' of this insect can be attributed to EVEs in the host genome. CONCLUSION: Our work shows that EVEs have led to the misidentification of aphid viruses from RNAseq data, and we argue that this is a widespread challenge for the study of viral diversity in insects.


Assuntos
Vírus de Plantas , Viroma , Animais , Insetos/genética , Vírus de Plantas/genética , Genoma de Inseto , Sequenciamento de Nucleotídeos em Larga Escala
3.
Neuroimage ; 265: 119765, 2023 01.
Artigo em Inglês | MEDLINE | ID: mdl-36427753

RESUMO

The fusiform face area (FFA) is a widely studied region causally involved in face perception. Even though cognitive neuroscientists have been studying the FFA for over two decades, answers to foundational questions regarding the function, architecture, and connectivity of the FFA from a large (N>1000) group of participants are still lacking. To fill this gap in knowledge, we quantified these multimodal features of fusiform face-selective regions in 1053 participants in the Human Connectome Project. After manually defining over 4,000 fusiform face-selective regions, we report five main findings. First, 68.76% of hemispheres have two cortically separate regions (pFus-faces/FFA-1 and mFus-faces/FFA-2). Second, in 26.69% of hemispheres, pFus-faces/FFA-1 and mFus-faces/FFA-2 are spatially contiguous, yet are distinct based on functional, architectural, and connectivity metrics. Third, pFus-faces/FFA-1 is more face-selective than mFus-faces/FFA-2, and the two regions have distinct functional connectivity fingerprints. Fourth, pFus-faces/FFA-1 is cortically thinner and more heavily myelinated than mFus-faces/FFA-2. Fifth, face-selective patterns and functional connectivity fingerprints of each region are more similar in monozygotic than dizygotic twins and more so than architectural gradients. As we share our areal definitions with the field, future studies can explore how structural and functional features of these regions will inform theories regarding how visual categories are represented in the brain.


Assuntos
Conectoma , Imageamento por Ressonância Magnética , Humanos , Encéfalo , Mapeamento Encefálico , Face , Reconhecimento Visual de Modelos , Estimulação Luminosa
4.
PLoS Pathog ; 17(4): e1009552, 2021 04.
Artigo em Inglês | MEDLINE | ID: mdl-33901257

RESUMO

Host genetic variation plays an important role in the structure and function of heritable microbial communities. Recent studies have shown that insects use immune mechanisms to regulate heritable symbionts. Here we test the hypothesis that variation in symbiont density among hosts is linked to intraspecific differences in the immune response to harboring symbionts. We show that pea aphids (Acyrthosiphon pisum) harboring the bacterial endosymbiont Regiella insecticola (but not all other species of symbionts) downregulate expression of key immune genes. We then functionally link immune expression with symbiont density using RNAi. The pea aphid species complex is comprised of multiple reproductively-isolated host plant-adapted populations. These 'biotypes' have distinct patterns of symbiont infections: for example, aphids from the Trifolium biotype are strongly associated with Regiella. Using RNAseq, we compare patterns of gene expression in response to Regiella in aphid genotypes from multiple biotypes, and we show that Trifolium aphids experience no downregulation of immune gene expression while hosting Regiella and harbor symbionts at lower densities. Using F1 hybrids between two biotypes, we find that symbiont density and immune gene expression are both intermediate in hybrids. We propose that in this system, Regiella symbionts are suppressing aphid immune mechanisms to increase their density, but that some hosts have adapted to prevent immune suppression in order to control symbiont numbers. This work therefore suggests that antagonistic coevolution can play a role in host-microbe interactions even when symbionts are transmitted vertically and provide a clear benefit to their hosts. The specific immune mechanisms that we find are downregulated in the presence of Regiella have been previously shown to combat pathogens in aphids, and thus this work also highlights the immune system's complex dual role in interacting with both beneficial and harmful microbes.


Assuntos
Afídeos/microbiologia , Carga Bacteriana/genética , Enterobacteriaceae/imunologia , Imunidade Inata/genética , Simbiose , Animais , Afídeos/classificação , Afídeos/genética , Afídeos/imunologia , Carga Bacteriana/fisiologia , Enterobacteriaceae/classificação , Enterobacteriaceae/citologia , Enterobacteriaceae/genética , Expressão Gênica , Regulação Bacteriana da Expressão Gênica , Genes de Insetos/genética , Variação Genética/fisiologia , Interações entre Hospedeiro e Microrganismos/genética , Interações entre Hospedeiro e Microrganismos/imunologia , Especificidade da Espécie , Simbiose/genética , Simbiose/imunologia
5.
J Anat ; 243(6): 1066-1068, 2023 12.
Artigo em Inglês | MEDLINE | ID: mdl-37458159

RESUMO

An average hemisphere of the human cerebral cortex contains over 100 individual folds (sulci). Many of these sulci have been overlooked by classic and modern atlases and neuroimaging tools. These sulci also show prominent individual differences: They can be broken into variable "complexes" and some sulci may not be present altogether.


Assuntos
Cérebro , Individualidade , Humanos , Córtex Cerebral , Neuroimagem , Membrana Celular
6.
Insect Mol Biol ; 32(6): 575-582, 2023 12.
Artigo em Inglês | MEDLINE | ID: mdl-37243432

RESUMO

Aphids are hosts to diverse viruses and are important vectors of plant pathogens. The spread of viruses is heavily influenced by aphid movement and behaviour. Consequently, wing plasticity (where individuals can be winged or wingless depending on environmental conditions) is an important factor in the spread of aphid-associated viruses. We review several fascinating systems where aphid-vectored plant viruses interact with aphid wing plasticity, both indirectly by manipulating plant physiology and directly through molecular interactions with plasticity pathways. We also cover recent examples where aphid-specific viruses and endogenous viral elements within aphid genomes influence wing formation. We discuss why unrelated viruses with different transmission modes have convergently evolved to manipulate wing formation in aphids and whether this is advantageous for both host and virus. We argue that interactions with viruses are likely shaping the evolution of wing plasticity within and across aphid species, and we discuss the potential importance of these findings for aphid biocontrol.


Los áfidos albergan diversos virus y son vectores de importantes patógenos de plantas. La propagación de virus está fuertemente influenciada por el movimiento y el comportamiento de los áfidos. En consecuencia, la plasticidad de las alas (en la cual algunos individuos desarrollan alas dependiendo de las condiciones ambientales) es un factor importante en la propagación viral asociada a los áfidos. En este documento revisamos varios ejemplos fascinantes en los que virus de plantas transmitidos por áfidos interactúan con la plasticidad fenotípica de las alas, indirectamente manipulando la fisiología de la planta y directamente a través de interacciones moleculares con los mecanismos de plasticidad fenotípica del áfido. También describimos ejemplos recientes que demuestran como algunos virus específicos de áfidos y elementos virales endógenos localizados en los genomas de áfidos influyen en la formación de alas. Últimamente, discutimos por qué virus no relacionados con diferentes modos de transmisión han evolucionado convergentemente para manipular la formación de alas en áfidos y si este fenómeno es beneficioso para el insecto y el virus. Nosotros objetamos que las interacciones con virus están probablemente influenciando la evolución intra- e interespecífica de la plasticidad de las alas en áfidos, y discutimos el potencial de estos hallazgos para el control biológico de los áfidos.


Assuntos
Afídeos , Vírus , Humanos , Animais , Afídeos/fisiologia , Asas de Animais
7.
Mol Ecol ; 30(6): 1559-1569, 2021 03.
Artigo em Inglês | MEDLINE | ID: mdl-33512733

RESUMO

Many insects host vertically transmitted microbes, which can confer benefits to their hosts but are costly to maintain and regulate. A key feature of these symbioses is variation: for example, symbiont density can vary among host and symbiont genotypes. However, the evolutionary forces maintaining this variation remain unclear. We studied variation in symbiont density using the pea aphid (Acyrthosiphon pisum) and the bacterium Regiella insecticola, a symbiont that can protect its host against fungal pathogens. We found that relative symbiont density varies both between two Regiella phylogenetic clades and among aphid "biotypes." Higher density symbiont infections are correlated with stronger survival costs, but variation in density has little effect on the protection Regiella provides against fungi. Instead, we found that in some aphid genotypes, a dramatic decline in symbiont density precedes the loss of a symbiont infection. Together, our data suggest that the optimal density of a symbiont infection is likely different from the perspective of aphid and microbial fitness. Regiella might prevent loss by maintaining high within-host densities, but hosts do not appear to benefit from higher symbiont numbers and may be advantaged by losing costly symbionts in certain environments. The standing variation in symbiont density observed in natural populations could therefore be maintained by antagonistic coevolutionary interactions between hosts and their symbiotic microbes.


Assuntos
Afídeos , Simbiose , Animais , Afídeos/genética , Enterobacteriaceae/genética , Fungos , Filogenia
8.
Proc Biol Sci ; 287(1937): 20201349, 2020 10 28.
Artigo em Inglês | MEDLINE | ID: mdl-33081611

RESUMO

A key focus of evolutionary developmental biology is on how phenotypic diversity is generated. In particular, both plasticity and developmental instability contribute to phenotypic variation among genetically identical individuals, but the interactions between the two phenomena and their general fitness impacts are unclear. We discovered a striking example of asymmetry in pea aphids: the presence of wings on one side and the complete or partial absence of wings on the opposite side. We used this asymmetric phenotype to study the connection between plasticity, developmental instability and fitness. We found that this asymmetric wing development (i) occurred equally on both sides and thus is a developmental instability; (ii) is present in some genetically unique lines but not others, and thus has a genetic basis; and (iii) has intermediate levels of fecundity, and thus does not necessarily have negative fitness consequences. We conclude that this dramatic asymmetry may arise from incomplete switching between developmental targets, linking plasticity and developmental instability. We suspect that what we have observed may be a more widespread phenomenon, occurring across species that routinely produce distinct, alternative phenotypes.


Assuntos
Afídeos/fisiologia , Asas de Animais , Animais , Evolução Biológica , Pisum sativum , Fenótipo
9.
Mol Ecol ; 29(4): 848-858, 2020 02.
Artigo em Inglês | MEDLINE | ID: mdl-31945243

RESUMO

A defining feature of the nutritional ecology of plant sap-feeding insects is that the dietary deficit of essential amino acids (EAAs) in plant sap is supplemented by EAA-provisioning microbial symbionts in the insect. Here, we demonstrated substantial variation in the nutritional phenotype of 208 genotypes of the pea aphid Acyrthosiphon pisum collected from a natural population. Specifically, the genotypes varied in performance (larval growth rates) on four test diets lacking the EAAs arginine, histidine and methionine or aromatic EAAs (phenylalanine and tryptophan), relative to the diet containing all EAAs. These data indicate that EAA supply from the symbiotic bacteria Buchnera can meet total aphid nutritional demand for only a subset of the EAA/aphid genotype combinations. We then correlated single nucleotide polymorphisms (SNPs) identified in the aphid and Buchnera genomes by reduced genome sequencing against aphid performance for each EAA deletion diet. This yielded significant associations between performance on the histidine-free diet and Buchnera SNPs, including metabolism genes predicted to influence histidine biosynthesis. Aphid genetic correlates of performance were obtained for all four deletion diets, with associations on the arginine-free diet and aromatic-free diets dominated by genes functioning in the regulation of metabolic and cellular processes. The specific aphid genes associated with performance on different EAA deletion diets are largely nonoverlapping, indicating some independence in the regulatory circuits determining aphid phenotype for the different EAAs. This study demonstrates how variation in the phenotype of associations collected from natural populations can be applied to elucidate the genetic basis of ecologically important traits in systems intractable to traditional forward/reverse genetic techniques.


Assuntos
Afídeos/genética , Buchnera/genética , Evolução Molecular , Simbiose/genética , Aminoácidos Essenciais/genética , Animais , Ecologia , Genoma Bacteriano/genética , Genoma de Inseto/genética , Genótipo , Pisum sativum/parasitologia , Fenótipo , Polimorfismo de Nucleotídeo Único/genética
10.
J Anim Ecol ; 88(4): 601-611, 2019 04.
Artigo em Inglês | MEDLINE | ID: mdl-30629747

RESUMO

Environmental stressors can be key drivers of phenotypes, including reproductive strategies and morphological traits. The response to stress may be altered by the presence of microbial associates. For example, in aphids, facultative (secondary) bacterial symbionts can provide protection against natural enemies and stress induced by elevated temperatures. Furthermore, aphids exhibit phenotypic plasticity, producing winged (rather than wingless) progeny that may be better able to escape danger, and the combination of these factors improves the response to stress. How symbionts and phenotypic plasticity, both of which shape aphids' stress response, influence one another, and together influence host fitness, remains unclear. In this study, we investigate how environmental stressors drive shifts in fecundity and winged/wingless offspring production, and how secondary symbionts influence the process. We induced production of winged offspring through distinct environmental stressors, including exposure to aphid alarm pheromone and crowding, and, in one experiment, we assessed whether the aphid response is influenced by host plant. In the winged morph, energy needed for wing maintenance may lead to trade-offs with other traits, such as reproduction or symbiont maintenance. Potential trade-offs between symbiont maintenance and fitness have been proposed but have not been tested. Thus, beyond studying the production of offspring of alternative morphs, we also explore the influence of symbionts across wing/wingless polyphenism as well as symbiont interaction with cross-generational impacts of environmental stress on reproductive output. All environmental stressors resulted in increased production of winged offspring and shifts in fecundity rates. Additionally, in some cases, aphid host-by-symbiont interactions influenced fecundity. Stress on first-generation aphids had cross-generational impacts on second-generation adults, and the impact on fecundity was further influenced by the presence of secondary symbionts and presence/absence of wings. Our study suggests a complex interaction between beneficial symbionts and environmental stressors. Winged aphids have the advantage of being able to migrate out of danger with more ease, but energy needed for wing production and maintenance may come with reproductive costs for their mothers and for themselves, where in certain cases, these costs are altered by secondary symbionts.


Assuntos
Afídeos , Animais , Bactérias , Pisum sativum , Simbiose , Asas de Animais
11.
J Anim Ecol ; 87(2): 478-488, 2018 03.
Artigo em Inglês | MEDLINE | ID: mdl-28542979

RESUMO

Most animals host communities of symbiotic bacteria. In insects, these symbionts may have particularly intimate interactions with their hosts: many are intracellular and can play important roles in host ecology and evolution, including protection against natural enemies. We investigated how interactions between different species or strains of endosymbiotic bacteria within an aphid host influence the outcome of symbiosis for both symbiont and host. We first asked whether different combinations of facultative symbiont species or strains can exist in stable co-infections. We then investigated whether the benefits that facultative bacteria confer on their hosts (protection against natural enemies) are enhanced, reduced or unaltered by the presence of a co-infecting symbiont. We asked this both for co-infecting symbionts that confer different phenotypes on their hosts (protection against fungal pathogens vs. parasitoid wasps) and symbionts with overlapping functions. Finally, we investigated the additional survival costs to aphids of carrying multiple infections of symbiont species or strains, and compared symbiont titres in double and single infections. We found that stable co-infections were possible between all of the combinations of facultative symbiont species (Regiella insecticola + Hamiltonella defensa, Regiella + Rickettsiella sp., Regiella + Spiroplasma sp.) and strains (Hamiltonella) that we studied. Where symbionts provided protection against different natural enemies, no alteration in protection was observed in the presence of co-infections. Where symbionts provided protection against the same natural enemy, the level of protection corresponded to the higher of the two symbionts present. In some instances, aphid hosts suffered additional survival costs when hosting double infections. In the case of Hamiltonella, however, infection with multiple strains of the same symbiont led to lower symbiont titres than single infections, and actually improved aphid survival. We conclude that the long-term maintenance of symbiont co-infections in aphids is likely to be determined primarily by costs of co-infections and in some instances by redundancy of symbiont benefits.


Assuntos
Afídeos/microbiologia , Afídeos/parasitologia , Enterobacteriaceae/fisiologia , Fungos/fisiologia , Interações entre Hospedeiro e Microrganismos/fisiologia , Vespas/fisiologia , Animais , Análise de Sobrevida
12.
J Anim Ecol ; 86(3): 473-483, 2017 May.
Artigo em Inglês | MEDLINE | ID: mdl-28211052

RESUMO

Determining the factors governing investment in immunity is critical to understanding host-pathogen ecological and evolutionary dynamics. Studies often consider disease resistance in the context of life-history theory, with the expectation that investment in immunity will be optimized in anticipation of disease risk. Immunity, however, is constrained by context-dependent fitness costs. How the costs of immunity vary across life-history strategies has yet to be considered. Pea aphids are typically unwinged but produce winged offspring in response to high population densities and deteriorating conditions. This is an example of polyphenism, a strategy used by many organisms to adjust to environmental cues. The goal of this study was to examine the relationship between the fitness costs of immunity, pathogen resistance and the strength of an immune response across aphid morphs that differ in life-history strategy but are genetically identical. We measured fecundity of winged and unwinged aphids challenged with a heat-inactivated fungal pathogen, and found that immune costs are limited to winged aphids. We hypothesized that these costs reflect stronger investment in immunity in anticipation of higher disease risk, and that winged aphids would be more resistant due to a stronger immune response. However, producing wings is energetically expensive. This guided an alternative hypothesis - that investing resources into wings could lead to a reduced capacity to resist infection. We measured survival and pathogen load after live fungal infection, and we characterized the aphid immune response to fungi by measuring immune cell concentration and gene expression. We found that winged aphids are less resistant and mount a weaker immune response than unwinged aphids, demonstrating that winged aphids pay higher costs for a less effective immune response. Our results show that polyphenism is an understudied factor influencing the expression of immune costs. More generally, our work shows that in addition to disease resistance, the costs of immunity vary between individuals with different life-history strategies. We discuss the implications of these findings for understanding how organisms invest optimally in immunity in the light of context-dependent constraints.


Assuntos
Afídeos/fisiologia , Fertilidade , Imunidade Celular , Imunidade Humoral , Características de História de Vida , Longevidade , Distribuição Animal , Animais , Afídeos/imunologia , Afídeos/microbiologia
13.
Biol Lett ; 13(5)2017 May.
Artigo em Inglês | MEDLINE | ID: mdl-28566541

RESUMO

Animal-associated microbial communities have important effects on host phenotypes. Individuals within and among species differ in the strains and species of microbes that they harbour, but how natural selection shapes the distribution and abundance of symbionts in natural populations is not well understood. Symbionts can be beneficial in certain environments but also impose costs on their hosts. Consequently, individuals that can or cannot associate with symbionts will be favoured under different ecological circumstances. As a result, we predict that individuals within a species vary in terms of how well they accept and maintain symbionts. In pea aphids, the frequency of endosymbionts varies among host-plant-associated populations ('biotypes'). We show that aphid genotypes from different biotypes vary in how well they accept and maintain symbionts after horizontal transfer. We find that aphids from biotypes that frequently harbour symbionts are better able to associate with novel symbionts than those from biotypes that less frequently harbour symbionts. Intraspecific variation in the ability of hosts to interact with symbionts is an understudied factor explaining patterns of host-symbiont association.


Assuntos
Simbiose , Animais , Afídeos , Transferência Genética Horizontal , Genótipo
15.
Neuropsychologia ; 195: 108786, 2024 03 12.
Artigo em Inglês | MEDLINE | ID: mdl-38181845

RESUMO

Two parallel research tracks link the morphology of small and shallow indentations, or sulci, of the cerebral cortex with functional features of the cortex and human cognition, respectively. The first track identified a relationship between the mid-fusiform sulcus (MFS) in ventral temporal cortex (VTC) and cognition in individuals with Autism Spectrum Disorder (ASD). The second track identified a new sulcus, the inframarginal sulcus (IFRMS), that serves as a tripartite landmark within the posteromedial cortex (PMC). As VTC and PMC are structurally and functionally different in ASD, here, we integrated these two tracks and tested if there are morphological differences in VTC and PMC sulci in a sample of young (5-17 years old) male participants (50 participants with ASD and 50 neurotypical controls). Our approach replicates and extends recent findings in four ways. First, regarding replication, the standard deviation (STD) of MFS cortical thickness (CT) was increased in ASD. Second, MFS length was shorter in ASD. Third, the CT STD effect extended to other VTC and to PMC sulci. Fourth, additional morphological features of VTC sulci (depth, surface area, gray matter volume) and PMC sulci (mean CT) were decreased in ASD, including putative tertiary sulci, which emerge last in gestation and continue to develop after birth. To our knowledge, this study is the most extensive comparison of the sulcal landscape (including putative tertiary sulci) in multiple cortical expanses between individuals with ASD and NTs based on manually defined sulci at the level of individual hemispheres, providing novel targets for future studies of neurodevelopmental disorders more broadly.


Assuntos
Transtorno do Espectro Autista , Humanos , Masculino , Pré-Escolar , Criança , Adolescente , Transtorno do Espectro Autista/diagnóstico por imagem , Imageamento por Ressonância Magnética , Córtex Cerebral/diagnóstico por imagem , Córtex Cerebral/anatomia & histologia , Lobo Temporal/diagnóstico por imagem , Cognição
16.
Appl Environ Microbiol ; 79(7): 2455-8, 2013 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-23354709

RESUMO

Here we show that a bacterial endosymbiont, Regiella insecticola, protects pea aphids (Acyrthosiphon pisum) from the aphid-specific fungal entomopathogen Zoophthora occidentalis but not from the generalist insect fungal pathogen Beauveria bassiana. This finding highlights the complex influence of fungi on the dynamics of this economically important agricultural pest.


Assuntos
Afídeos/microbiologia , Beauveria/patogenicidade , Enterobacteriaceae/fisiologia , Entomophthorales/patogenicidade , Simbiose , Animais , Afídeos/fisiologia , Interações Microbianas , Pisum sativum/parasitologia
17.
PLoS One ; 18(5): e0286095, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37205695

RESUMO

Fungi in the family Entomophthoraceae are prevalent pathogens of aphids. Facultative symbiotic bacteria harbored by aphids, including Spiroplasma sp. and Regiella insecticola, have been shown to make their hosts more resistant to infection with the fungal pathogen Pandora neoaphidis. How far this protection extends against other species of fungi in the family Entomophthoraceae is unknown. Here we isolated a strain of the fungal pathogen Batkoa apiculata infecting a natural population of pea aphids (Acyrthosiphon pisum) and confirmed its identity by sequencing the 28S rRNA gene. We then infected a panel of aphids each harboring a different species or strain of endosymbiotic bacteria to test whether aphid symbionts protect against B. apiculata. We found no evidence of symbiont-mediated protection against this pathogen, and our data suggest that some symbionts make aphids more susceptible to infection. This finding is relevant to our understanding of this important model of host-microbe interactions, and we discuss our results in the context of aphid-microbe ecological and evolutionary dynamics.


Assuntos
Afídeos , Animais , Afídeos/genética , Simbiose , Interações entre Hospedeiro e Microrganismos , Enterobacteriaceae/genética
18.
Evolution ; 77(7): 1704-1711, 2023 Jun 29.
Artigo em Inglês | MEDLINE | ID: mdl-37094805

RESUMO

Many insects harbor heritable microbes that influence host phenotypes. Symbiont strains establish at different densities within hosts. This variation is important evolutionarily because within-host density has been linked to the costs and benefits of the symbiosis for both partners. Studying the factors shaping within-host density is important to our broader understanding of host-microbe coevolution. Here we focused on different strains of Regiella insecticola, a facultative symbiont of aphids. We first showed that strains of Regiella establish in pea aphids at drastically different densities. We then found that variation in density is correlated with the expression levels of two key insect immune system genes (phenoloxidase and hemocytin), with the suppression of immune gene expression correlating with higher Regiella density. We then performed an experiment where we established coinfections of a higher- and a lower-density Regiella strain, and we showed that the higher-density strain is better able to persist in coinfections than the lower-density strain. Together, our results point to a potential mechanism that contributes to strain-level variation in symbiont density in this system, and our data suggest that symbiont fitness may be increased by establishing at higher density within hosts. Our work highlights the importance of within-host dynamics shaping symbiont evolution.


Assuntos
Afídeos , Coinfecção , Animais , Afídeos/genética , Enterobacteriaceae/genética , Simbiose , Fenótipo
19.
bioRxiv ; 2023 Feb 06.
Artigo em Inglês | MEDLINE | ID: mdl-36798269

RESUMO

Recent studies identify a surprising coupling between evolutionarily new sulci and the functional organization of human posteromedial cortex (PMC). Yet, no study has compared this modern PMC sulcal patterning between humans and non-human hominoids. To fill this gap in knowledge, we first manually defined 918 sulci in 120 chimpanzee ( Pan Troglodytes ) hemispheres and 1619 sulci in 144 human hemispheres. We uncovered four new PMC sulci, and quantitatively identified species differences in incidence, depth, and surface area. Interestingly, some PMC sulci are more common in humans and others, in chimpanzees. Further, we found that the prominent marginal ramus of the cingulate sulcus differs significantly between species. Contrary to classic observations, the present results reveal that the surface anatomy of PMC substantially differs between humans and chimpanzees â€" findings which lay a foundation for better understanding the evolution of neuroanatomical-functional and neuroanatomical-behavioral relationships in this highly expanded region of the human cerebral cortex.

20.
Commun Biol ; 6(1): 586, 2023 06 01.
Artigo em Inglês | MEDLINE | ID: mdl-37264068

RESUMO

Recent studies identify a surprising coupling between evolutionarily new sulci and the functional organization of human posteromedial cortex (PMC). Yet, no study has compared this modern PMC sulcal patterning between humans and non-human hominoids. To fill this gap in knowledge, we first manually defined over 2500 PMC sulci in 120 chimpanzee (Pan Troglodytes) hemispheres and 144 human hemispheres. We uncovered four new sulci, and quantitatively identified species differences in sulcal incidence, depth, and surface area. Interestingly, some sulci are more common in humans and others, in chimpanzees. Further, we found that the prominent marginal ramus of the cingulate sulcus differs significantly between species. Contrary to classic observations, the present results reveal that the surface anatomy of PMC substantially differs between humans and chimpanzees-findings which lay a foundation for better understanding the evolution of neuroanatomical-functional and neuroanatomical-behavioral relationships in this highly expanded region of the human cerebral cortex.


Assuntos
Hominidae , Pan troglodytes , Animais , Humanos , Pan troglodytes/anatomia & histologia , Córtex Cerebral/anatomia & histologia
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa