Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
J Chem Phys ; 157(4): 044501, 2022 Jul 28.
Artigo em Inglês | MEDLINE | ID: mdl-35922344

RESUMO

A major challenge in simulating glassy systems is the ability to generate configurations that may be found in equilibrium at sufficiently low temperatures, in order to probe static and dynamic behavior close to the glass transition. A variety of approaches have recently explored ways of surmounting this obstacle. Here, we explore the possibility of employing mechanical agitation, in the form of cyclic shear deformation, to generate low energy configurations in a model glass former. We perform shear deformation simulations over a range of temperatures, shear rates, and strain amplitudes. We find that shear deformation induces faster relaxation toward low energy configurations, or overaging, in simulations at sufficiently low temperatures, consistently with previous results for athermal shear. However, for temperatures at which simulations can be run until a steady state is reached with or without shear deformation, we find that the inclusion of shear deformation does not result in any speed up of the relaxation toward low energy configurations. Although we find the configurations from shear simulations to have properties indistinguishable from an equilibrium ensemble, the cyclic shear procedure does not guarantee that we generate an equilibrium ensemble at a desired temperature. In order to ensure equilibrium sampling, we develop a hybrid Monte Carlo algorithm that employs cyclic shear as a trial generation step and has acceptance probabilities that depend not only on the change in internal energy but also on the heat dissipated (equivalently, work done). We show that such an algorithm, indeed, generates an equilibrium ensemble.

2.
Phys Rev Lett ; 126(11): 118003, 2021 Mar 19.
Artigo em Inglês | MEDLINE | ID: mdl-33798360

RESUMO

Disordered hyperuniformity is a description of hidden correlations in point distributions revealed by an anomalous suppression in fluctuations of local density at various coarse-graining length scales. In the absorbing phase of models exhibiting an active-absorbing state transition, this suppression extends up to a hyperuniform length scale that diverges at the critical point. Here, we demonstrate the existence of additional many-body correlations beyond hyperuniformity. These correlations are hidden in the higher moments of the probability distribution of the local density and extend up to a longer length scale with a faster divergence than the hyperuniform length on approaching the critical point. Our results suggest that a hidden order beyond hyperuniformity may generically be present in complex disordered systems.

3.
Phys Rev Lett ; 125(8): 085505, 2020 Aug 21.
Artigo em Inglês | MEDLINE | ID: mdl-32909772

RESUMO

We develop a generic strategy and simple numerical models for multicomponent metallic glasses for which the swap Monte Carlo algorithm can produce highly stable equilibrium configurations equivalent to experimental systems cooled more than 10^{7} times slower than in conventional simulations. This paves the way for a deeper understanding of the thermodynamic, dynamic, and mechanical properties of metallic glasses. As first applications, we considerably extend configurational entropy measurements down to the experimental glass temperature, and demonstrate a qualitative change of the mechanical response of metallic glasses of increasing stability toward brittleness.

4.
J Chem Phys ; 153(13): 134505, 2020 Oct 07.
Artigo em Inglês | MEDLINE | ID: mdl-33032429

RESUMO

The swap Monte Carlo algorithm allows the preparation of highly stable glassy configurations for a number of glass-formers but is inefficient for some models, such as the much studied binary Kob-Andersen (KA) mixture. We have recently developed generalizations to the KA model where swap can be very effective. Here, we show that these models can, in turn, be used to considerably enhance the stability of glassy configurations in the original KA model at no computational cost. We successfully develop several numerical strategies both in and out of equilibrium to achieve this goal and show how to optimize them. We provide several physical measurements indicating that the proposed algorithms considerably enhance mechanical and thermodynamic stability in the KA model, including a transition toward brittle yielding behavior. Our results thus pave the way for future studies of stable glasses using the KA model.

5.
Eur Phys J E Soft Matter ; 41(8): 90, 2018 Aug 08.
Artigo em Inglês | MEDLINE | ID: mdl-30078172

RESUMO

The slow down of dynamics in glass forming liquids as the glass transition is approached has been characterised through the Adam-Gibbs relation, which relates relaxation time scales to the configurational entropy. The Adam-Gibbs relation cannot apply simultaneously to all relaxation times scales unless they are coupled, and exhibit closely related temperature dependences. The breakdown of the Stokes-Einstein relation presents an interesting situation to the contrary, and in analysing it, it has recently been shown that the Adam-Gibbs relation applies to diffusion coefficients rather than to viscosity or structural relaxation times related to the decay of density fluctuations. However, for multi-component liquids --the typical cases considered in computer simulations, metallic glass formers, etc.-- such a statement raises the question of which diffusion coefficient is described by the Adam-Gibbs relation. All diffusion coefficients can be consistently described by the Adam-Gibbs relation if they bear a power law relationship with each other. Remarkably, we find that for a wide range of glass formers, and for a wide range of temperatures spanning the normal and the slow relaxation regimes, such a relationship holds. We briefly discuss possible rationalisations of the observed behaviour.

6.
Phys Rev Lett ; 119(5): 056001, 2017 Aug 04.
Artigo em Inglês | MEDLINE | ID: mdl-28949755

RESUMO

The Adam-Gibbs (AG) relation connects the dynamics of a glass-forming liquid to its thermodynamics via the configurational entropy and is of fundamental importance in descriptions of glassy behavior. The breakdown of the Stokes-Einstein relation (SEB) between the diffusion coefficient and the viscosity (or structural relaxation times) in glass formers raises the question as to which dynamical quantity the AG relation describes. By performing molecular dynamics simulations, we show that the AG relation is valid over the widest temperature range for the diffusion coefficient and not for the viscosity or relaxation times. Studying relaxation times defined at a given wavelength, we find that SEB and the deviation from the AG relation occur below a temperature at which the correlation length of dynamical heterogeneity equals the wavelength probed.

7.
Nat Commun ; 8: 14653, 2017 03 01.
Artigo em Inglês | MEDLINE | ID: mdl-28248289

RESUMO

Amorphous solids are ubiquitous among natural and man-made materials. Often used as structural materials for their attractive mechanical properties, their utility depends critically on their response to applied stresses. Processes underlying such mechanical response, and in particular the yielding behaviour of amorphous solids, are not satisfactorily understood. Although studied extensively, observed yielding behaviour can be gradual and depend significantly on conditions of study, making it difficult to convincingly validate existing theoretical descriptions of a sharp yielding transition. Here we employ oscillatory deformation as a reliable probe of the yielding transition. Through extensive computer simulations for a wide range of system sizes, we demonstrate that cyclically deformed model glasses exhibit a sharply defined yielding transition with characteristics that are independent of preparation history. In contrast to prevailing expectations, the statistics of avalanches reveals no signature of the impending transition, but exhibit dramatic, qualitative, changes in character across the transition.

8.
J Phys Chem B ; 119(34): 11243-52, 2015 Aug 27.
Artigo em Inglês | MEDLINE | ID: mdl-26134744

RESUMO

An understanding of the origin of fragility, which the rapidity of change of viscosity and related dynamical quantities, has been sought by a variety of approaches over the years. Within the framework of the Adam-Gibbs relation, fragility is in principle related to both the temperature variation of configurational entropy and the high temperature activation energy. Many theoretical analyses have been focused on the variation of configuration entropy, although the importance of the high temperature activation energy in determining the fragility of a glass former has also been emphasized. We explore the latter aspect by considering a model liquid whose high temperature activation energy is modified by hand, through the introduction of a tunable barrier to bond breaking. We show that changes in such a barrier are able to modify the fragility measured from the temperature dependence of dynamical quantities, while a thermodynamic measure of fragility obtained from the configurational entropy remains unchanged. We discuss the implications of our results to our understanding of fragility, and outline open questions that merit further investigation.

SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa