Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 68
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Int J Mol Sci ; 25(11)2024 May 29.
Artigo em Inglês | MEDLINE | ID: mdl-38892167

RESUMO

New ß-amino-substituted porphyrin derivatives bearing carboxy groups were synthesized and their performance as sensitizers in dye-sensitized solar cells (DSSC) was evaluated. The new compounds were obtained in good yields (63-74%) through nucleophilic aromatic substitution reactions with 3-sulfanyl- and 4-sulfanylbenzoic acids. Although the electrochemical studies indicated suitable HOMO and LUMO energy levels for use in DSSC, the devices fabricated with these compounds revealed a low power conversion efficiency (PCE) that is primarily due to the low open-circuit voltage (Voc) and short-circuit current density (Jsc) values.


Assuntos
Porfirinas , Energia Solar , Porfirinas/química , Porfirinas/síntese química
2.
Phys Chem Chem Phys ; 24(29): 17593-17604, 2022 Jul 27.
Artigo em Inglês | MEDLINE | ID: mdl-35829638

RESUMO

The thermodynamics and kinetics of compound 7-diethylamino-4'-dimethylaminoflavylium were studied in water : ethanol (1 : 1) and water in the presence of SDS and CTAB micelles. The blue flavylium cation is in equilibrium with the pink protonated flavylium cation defined by pKAH2+/AH+ and the yellow trans-chalcone, defined by pKAH+/Ct. The difference between these two pKs gives the pH domain of the flavylium cation, ΔpK = 1.95 in CTAB, ΔpK = 5.6 in water/ethanol (1 : 1) and ΔpK = 8.5 in SDS micelles. On the other hand, the pH domain of the trans-chalcone is limited by pKAH+/Ct and pKCt/Ct-. It is lower in SDS micelles ΔpK = 2.7, increases in ethanol/water (1 : 1) ΔpK = 5.1 and is maximum in CTAB micelles, ΔpK = 6.8. All these effects can be explained by the electric charge present at the micellar surface. Relative energy level diagrams that allow for the explanation of the driving forces for any pH stimuli or light absorption were constructed from the calculated equilibrium constants. Irradiation of the trans-chalcone at 466 nm leads to the formation of the flavylium cation. In water : ethanol (1 : 1), the photochemistry is residual with Φ < 0.00002, while in SDS micelles at pH = 7 light increases the rate of the spontaneous conversion of trans-chalcone to the flavylium cation, with quantum yield Φ = 0.002; photochromism from trans-chalcone to give the flavylium cation with the same quantum yield is also observed in CTAB micelles.


Assuntos
Chalcona , Chalconas , Cetrimônio , Chalcona/química , Etanol , Micelas , Termodinâmica , Água/química
3.
Molecules ; 26(13)2021 Jun 27.
Artigo em Inglês | MEDLINE | ID: mdl-34198975

RESUMO

The past decade has seen growing interest in marine natural pigments for biotechnological applications. One of the most abundant classes of biological pigments is the tetrapyrroles, which are prized targets due their photodynamic properties; porphyrins are the best known examples of this group. Many animal porphyrinoids and other tetrapyrroles are produced through heme metabolic pathways, the best known of which are the bile pigments biliverdin and bilirubin. Eulalia is a marine Polychaeta characterized by its bright green coloration resulting from a remarkably wide range of greenish and yellowish tetrapyrroles, some of which have promising photodynamic properties. The present study combined metabolomics based on HPLC-DAD with RNA-seq transcriptomics to investigate the molecular pathways of porphyrinoid metabolism by comparing the worm's proboscis and epidermis, which display distinct pigmentation patterns. The results showed that pigments are endogenous and seemingly heme-derived. The worm possesses homologs in both organs for genes encoding enzymes involved in heme metabolism such as ALAD, FECH, UROS, and PPOX. However, the findings also indicate that variants of the canonical enzymes of the heme biosynthesis pathway can be species- and organ-specific. These differences between molecular networks contribute to explain not only the differential pigmentation patterns between organs, but also the worm's variety of novel endogenous tetrapyrrolic compounds.


Assuntos
Perfilação da Expressão Gênica/métodos , Redes Reguladoras de Genes , Metabolômica/métodos , Poliquetos/genética , Tetrapirróis/metabolismo , Animais , Cromatografia Líquida de Alta Pressão , Epiderme/metabolismo , Redes e Vias Metabólicas , Especificidade de Órgãos , Fármacos Fotossensibilizantes/metabolismo , Poliquetos/metabolismo , Análise de Sequência de RNA , Especificidade da Espécie , Tetrapirróis/genética
4.
Molecules ; 26(10)2021 May 14.
Artigo em Inglês | MEDLINE | ID: mdl-34069210

RESUMO

A set of 3-ethynylaryl coumarin dyes with mono, bithiophenes and the fused variant, thieno [3,2-b] thiophene, as well as an alkylated benzotriazole unit were prepared and tested for dye-sensitized solar cells (DSSCs). For comparison purposes, the variation of the substitution pattern at the coumarin unit was analyzed with the natural product 6,7-dihydroxycoumarin (Esculetin) as well as 5,7-dihydroxycomarin in the case of the bithiophene dye. Crucial steps for extension of the conjugated system involved Sonogashira reaction yielding highly fluorescent molecules. Spectroscopic characterization showed that the extension of conjugation via the alkynyl bridge resulted in a strong red-shift of absorption and emission spectra (in solution) of approximately 73-79 nm and 52-89 nm, respectively, relative to 6,7-dimethoxy-4-methylcoumarin (λabs = 341 nm and λem = 410 nm). Theoretical density functional theory (DFT) calculations show that the Lowest Unoccupied Molecular Orbital (LUMO) is mostly centered in the cyanoacrylic anchor unit, corroborating the high intramolecular charge transfer (ICT) character of the electronic transition. Photovoltaic performance evaluation reveals that the thieno [3,2-b] thiophene unit present in dye 8 leads to the best sensitizer of the set, with a conversion efficiency (η = 2.00%), best VOC (367 mV) and second best Jsc (9.28 mA·cm-2), surpassed only by dye 9b (Jsc = 10.19 mA·cm-2). This high photocurrent value can be attributed to increased donor ability of the 5,7-dimethoxy unit when compared to the 6,7 equivalent (9b).

5.
Mar Drugs ; 18(6)2020 Jun 06.
Artigo em Inglês | MEDLINE | ID: mdl-32517206

RESUMO

Porphyrins and derivatives form one of the most abundant classes of biochromes. They result from the breakdown of heme and have crucial physiological functions. Bilins are well-known representatives of this group that, besides significant antioxidant and anti-mutagenic properties, are also photosensitizers for photodynamic therapies. Recently, we demonstrated that the Polychaeta Eulalia viridis, common in the Portuguese rocky intertidal, holds a high variety of novel greenish and yellowish porphyrinoid pigments, stored as granules in the chromocytes of several organs. On the follow-up of this study, we chemically characterized pigment extracts from the worm's skin and proboscis using HPLC and evaluated their light and dark toxicity in vivo and ex vivo using Daphnia and mussel gill tissue as models, respectively. The findings showed that the skin and proboscis have distinct patterns of hydrophilic or even amphiphilic porphyrinoids, with some substances in common. The combination of the two bioassays demonstrated that the extracts from the skin exert higher dark toxicity, whereas those from the proboscis rapidly exert light toxicity, then becoming exhausted. One particular yellow pigment that is highly abundant in the proboscis shows highly promising properties as a natural photosensitizer, revealing that porphyrinoids from marine invertebrates are important sources of these high-prized bioproducts.


Assuntos
Fármacos Fotossensibilizantes/química , Pigmentos Biológicos/química , Poliquetos , Porfirinas/química , Animais , Organismos Aquáticos , Oceanos e Mares
6.
Chemistry ; 25(14): 3477-3482, 2019 Mar 07.
Artigo em Inglês | MEDLINE | ID: mdl-30632649

RESUMO

The discovery of stimuli-responsive high affinity host-guest pairs with potential applications under biologically relevant conditions is a challenging goal. This work reports a high-affinity 1:1 complex formed between cucurbit[8]uril and a water-soluble photochromic diarylethene derivative. It was found that, by confining the open isomer within the cavity of the receptor, a redshift in the absorption spectrum and an enhancement of the photocyclization quantum yield from Φ=0.04 to Φ=0.32 were induced. This improvement in the photochemical performance enables quantitative photocyclization with visible light that, together with the near-infrared light-induced ring-opening reaction and the 100-fold selectivity for the closed isomer, confirms this as an outstanding light-responsive affinity pair.

7.
Photochem Photobiol Sci ; 18(5): 993-996, 2019 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-30849165

RESUMO

A tripodal coumarin derivative shows complex photoreactivity, changing from intra- to intermolecular photodimerization with increasing concentration. At high concentration, the compound undergoes efficient photopolymerization, resulting in the formation of polymeric submicron-sized particles. The size of these particles can be precisely increased through photoirradiation, without affecting their polydispersity.

8.
Phys Chem Chem Phys ; 21(38): 21651-21662, 2019 Oct 14.
Artigo em Inglês | MEDLINE | ID: mdl-31549705

RESUMO

The comparison of the ground-state reactivity of anthocyanins and aurone model compounds (i.e. with and without the furano bridge) has shown that the kinetic paradigm does not depend on the bridge but only on the hydroxyl substituent pattern, independently of the presence of the bridge: (i) bell shaped kinetics for those with two hydroxyl substituents in position 4' and 7, and (ii) four distinct kinetic steps for the mono substituted compounds with a hydroxyl in position 4'. The excited state proton transfer (ESPT) properties of these compounds were also investigated using steady-state and time-resolved spectroscopic techniques. It was found that the ESPT efficiency is significantly higher for the bridged compounds. Interestingly, pH-dependent steady-state fluorescence emission experiments show that in 4',7-dihydroxyfuranoflavylium the hydroxyl group in position 7 is the more acidic one in the excited state, while 1H NMR titration curves indicate a higher acidity constant in the ground state for the proton at the hydroxyl group in position 4'. Differently, the fluorescence emission spectrum of the quinoidal base deprotonated at position 7 is only observed upon excitation of the flavylium cation while the one from the base deprotonated at 4' is observed upon direct excitation.

9.
J Org Chem ; 83(19): 12297-12304, 2018 10 05.
Artigo em Inglês | MEDLINE | ID: mdl-30193456

RESUMO

A convenient method to synthesize A-type proanthocyanidin analogues from flavylium salts and π-nucleophiles has been developed. It was found that the thermodynamic stability of the starting flavylium salt, assessed by the measurement of the apparent acidity constant ( K'a), was the key parameter to design effective one-pot reactions between flavylium salts and nucleophiles such as phloroglucinol and (+)-catechin. When flavylium salts have a p K'a value of 1.7 or lower, the synthesis of the corresponding 2,8-dioxabyciclo[3.3.1]nonane derivative was properly achieved.

10.
J Org Chem ; 82(10): 5301-5309, 2017 05 19.
Artigo em Inglês | MEDLINE | ID: mdl-28441475

RESUMO

The chemistry of 2,2'-spirobis[chromene] derivatives is intimately related to the one of anthocyanins and similar compounds. The 2,2'-spirobis[chromene] species plays a central role in the network of chemical reactions connecting two different flavylium-based multistate systems. In the present work, a new asymmetric 2,2'-spirobis[chromene] intermediate possessing a constrained propylenic bridge between carbons 3 and 3' was isolated and its role as a pivot in the anthocyanins-type multistate of chemical reactions was investigated by the conjugation of absorption spectroscopy, stopped-flow, NMR, and X-ray crystallography. It was confirmed that the propylenic bridge is essential to stabilize the spirobis[chromene] species. Furthermore, under acidic conditions, two cis-trans styrylflavylium isomers were identified, which could be interconverted directly into one another with light. This is the first report of styrylflavylium cations with photoisomerization on the styryl moiety.

11.
Chemistry ; 22(35): 12495-505, 2016 Aug 22.
Artigo em Inglês | MEDLINE | ID: mdl-27465267

RESUMO

The effect of methyl, hydroxyl, and chloride substituents in position 3 of the 3',4',7-trihydroxyflavylium core structure was studied. The stability, relative energy of each of chemical species (thermodynamics), and their rates of interconversion (kinetics) are very dependent on these substituents. By comparing the mole fraction distribution at equilibrium of the three multistate systems with the parent 3',4',7-trihydroxyflavylium, introduction of a methyl substituent in position 3 increases the mole fraction of hemiketal at the expense of the trans-chalcone and increases the hydration rate very significantly; a hydroxyl substituent in position 3 gives rise to a degradation process, as observed in anthocyanidins. In the case of 3-chloro-3',4',7-trihydroxyflavylium, a dramatic increase of the flavylium cation acidity was observed and a photochromic system can be operated upon irradiation of the respective trans-chalcone in 1 m HCl. According to the photochromic response of 3,3',4',7-tetrahydroxyflavylium and 3',4',7-trihydroxyflavylium, some requirements for a good photochromic performance are discussed.

12.
Faraday Discuss ; 185: 361-79, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-26395804

RESUMO

A multistate molecular dyad containing flavylium and viologen units was synthesized and the pH dependent thermodynamics of the network completely characterized by a variety of spectroscopic techniques such as NMR, UV-vis and stopped-flow. The flavylium cation is only stable at acidic pH values. Above pH ≈ 5 the hydration of the flavylium leads to the formation of the hemiketal followed by ring-opening tautomerization to give the cis-chalcone. Finally, this last species isomerizes to give the trans-chalcone. For the present system only the flavylium cation and the trans-chalcone species could be detected as being thermodynamically stable. The hemiketal and the cis-chalcone are kinetic intermediates with negligible concentrations at the equilibrium. All stable species of the network were found to form 1 : 1 and 2 : 1 host : guest complexes with cucurbit[7]uril (CB7) with association constants in the ranges 10(5)-10(8) M(-1) and 10(3)-10(4) M(-1), respectively. The 1 : 1 complexes were particularly interesting to devise pH responsive bistable pseudorotaxanes: at basic pH values (≈12) the flavylium cation interconverts into the deprotonated trans-chalcone in a few minutes and under these conditions the CB7 wheel was found to be located around the viologen unit. A decrease in pH to values around 1 regenerates the flavylium cation in seconds and the macrocycle is translocated to the middle of the axle. On the other hand, if the pH is decreased to 6, the deprotonated trans-chalcone is neutralized to give a metastable species that evolves to the thermodynamically stable flavylium cation in ca. 20 hours. By taking advantage of the pH-dependent kinetics of the trans-chalcone/flavylium interconversion, spatiotemporal control of the molecular organization in pseudorotaxane systems can be achieved.

13.
ACS Omega ; 9(12): 14627-14637, 2024 Mar 26.
Artigo em Inglês | MEDLINE | ID: mdl-38560006

RESUMO

A set of acenaphthylene dyes with arylethynyl π-bridges was tested for dye-sensitized solar cells (DSSCs). Crucial steps for the extension of the conjugated system from the acenaphylene core involved Sonogashira coupling reactions. Phenyl, thiophene, benzotriazole, and thieno-[3,2-b]thiophene moieties were employed to extend the conjugation of the π-bridges. The systems were characterized by cyclic voltammetry and by UV-vis absorption and emission. The spectroscopic characterization showed that the last three bridges resulted in red-shifted absorption and emission spectra relative to the parent phenyl-bridged compound, in accordance with TD-DFT calculations. The phenylethynyl derivative 6a achieved a conversion efficiency of 2.51% with Voc, Jsc, and FF values of 0.365 V, 13.32 mA/cm2, and 0.52, respectively. The efficiency of this compound improved to 3.15% with the addition of CDCA (10 mM), representing the best efficiency result in this study. The overall conversion efficiency of the other aryl derivatives 6b-d proved to be significantly inferior (14-40%) to that of 6a due to a significant decrease of Jsc.

14.
J Agric Food Chem ; 72(13): 7497-7510, 2024 Apr 03.
Artigo em Inglês | MEDLINE | ID: mdl-38520401

RESUMO

The kinetics, thermodynamics, and degradation of malvidin mono- and diglucosides were studied following a holistic approach by extending to the basic medium. In acidic conditions, the reversible kinetics of the flavylium cation toward the equilibrium is controlled by the hydration and cis-trans isomerization steps, while in the basic medium, the OH- nucleophilic addition to the anionic quinoidal bases is the slowest step. There is a pH range (transition pHs), between the acidic and basic paradigms, that includes physiological pH (7.4), where degradation reactions occur faster, preventing the system from reaching the equilibrium. The transition pH of the diglucoside is narrower, and in contrast with the monoglucoside, there is no evidence for the formation of colored oligomers among the degradation products. Noteworthy, OH- addition in position 4 to form B42-, a kinetic product that decreases the overall equilibration rate, was observed only for the diglucoside.


Assuntos
Antocianinas , Glucosídeos , Antocianinas/metabolismo , Termodinâmica
15.
Photochem Photobiol Sci ; 12(5): 883-94, 2013 May.
Artigo em Inglês | MEDLINE | ID: mdl-23467482

RESUMO

Seven flavylium salt dyes were employed for the first time as sensitizers for dye-sensitized solar cells (DSSCs). The theoretical and experimental wavelengths of the maximum absorbances, the HOMO and LUMO energy levels, the coefficients, the oscillator strengths and the dipole moments are calculated for these synthetic dyes. The introduction of a donor group in the flavylium molecular structure was investigated. Photophysical and photoelectrochemical measurements showed that some of these synthetic analogues of anthocyanins are very promising for DSSC applications. The best performance was obtained by a DSSC based on the novel compound 7-(N,N-diethylamino)-3',4'-dihydroxyflavylium which produced a 2.15% solar energy-to-electricity conversion efficiency, under AM 1.5 irradiation (100 mW cm(-2)) with a short-circuit current density (J(sc)) of 12.0 mA cm(-2), a fill factor of 0.5 and an open-circuit voltage (V(oc)) of 0.355 V; its incident photocurrent efficiency of 51% at the peak of the visible absorption band of the dye is remarkable. Our results demonstrated that the substitution of a hydroxylic group with a diethylamine unit in position 7 of ring A of the flavylium backbone expanded the π-conjugation in the dye and thus resulted in a higher absorption in the visible region and is advantageous for effective electron injection from the dye into the conduction band of TiO2.

16.
J Phys Chem A ; 117(20): 4167-73, 2013 May 23.
Artigo em Inglês | MEDLINE | ID: mdl-23611019

RESUMO

The photochromism of a 2-hydroxychalcone has been studied in CH3CN and H2O/CH3OH (1/1, v/v), as well as in analogous deuterated solvents using steady-state (UV-vis absorption, (1)H and (13)C NMR) and time-resolved (ultrafast transient absorption and nanosecond flow flash photolysis) spectroscopies. Whereas the irradiation of trans-chalcone (Ct) under neutral pH conditions leads to the formation of the same final chromene derivative (B) in both media, two distinct photochemical mechanisms are proposed in agreement with thermodynamic and kinetic properties of the chemical reaction network at the ground state. Following light excitation, the first steps are identical in acetonitrile and aqueous solution: the Franck-Condon excited state rapidly populates the trans-chalcone singlet excited state (1)Ct* (LE), which evolves into a twisted state (1)P*. This excited state is directly responsible for the photochemistry in acetonitrile in the nanosecond time scale (16 ns) leading to the formation of cis-chalcone (Cc) through a simple isomerization process. The resulting cis-chalcone evolves into the chromene B through a tautomerization process in the ground state (τ = 10 ms). Unlike in acetonitrile, in H2O/CH3OH (1/1, v/v), the P* state becomes unstable and evolves into a new state attributed to the tautomer (1)Q*. This state directly evolves into B in one photochemical step through a consecutive ultrafast tautomerization process followed by electrocyclization. This last case represents a new hypothesis in the photochromism of 2-hydroxychalcone derivatives.


Assuntos
Chalconas/química , Água/química , Acetonitrilas/química , Metanol/química , Estrutura Molecular , Processos Fotoquímicos , Estereoisomerismo
17.
J Phys Chem A ; 117(41): 10650-60, 2013 Oct 17.
Artigo em Inglês | MEDLINE | ID: mdl-24050687

RESUMO

The ground and excited state (in the singlet state, S1) acid­base equilibria, together with the photophysical properties of the two main constituents of brazilwood, brazilin and brazilein, have been investigated in aqueous solutions in the pH range: −1 < pH < 10. Brazilin is the colorless reduced form of brazilein where three ground and three excited state species (B(red)H(n), with n = 2­4 representing the protonated hydroxyl groups) are observed with two corresponding acidity constants: pKa1 = 6.6 and pKa2 = 9.4 (pKa1* = 4.7 and pKa2* = 9.9, obtained from the Förster cycle). In the case of brazilein, three ground species (pKa1 = 6.5 and pKa2 = 9.5) and four excited state species were identified (again from the Förster cycle: pKa1* = 3.9 and pKa2* = 9.8). The colorless species (brazilin) presents a high fluorescence quantum yield (F = 0.33) and competitive radiative channel (kF = 1.3 × 10(9) s(­1)) over radiationless processes (kNR = 2.6 × 10(9) s(­1)). In contrast to this behavior, brazilein displays a F value 2 orders of magnitude lower and a dominance of the radiationless decay pathways, which is suggested to be linked to an excited state proton transfer leading to a quinoidal-like structure. This is further supported by time-resolved data (obtained in a ps time domain). The overall data indicates that brazilin is more prone to degradation than brazilein, mainly due to the high efficiency of the radiationless decay channel (likely through internal conversion), which confers a stabilizing inherent characteristic to the latter. In the case of brazilein, the efficiency of the radiationless channel is linked to an excited state intramolecular proton transfer resulting from an excited state equilibrium involving neutral and zwitterionic tautomeric species of this compound. Furthermore, a theoretical study has been performed with the determination of the optimized ground-state and excited molecular geometries for the two compounds together with the prediction of the lowest vertical one-electron excitation energy and the relevant molecular orbital contours and charge densities changes using density functional theory calculations. These were found to corroborate differences in acidity in the ground and excited states.

18.
Chem Soc Rev ; 41(2): 869-908, 2012 Jan 21.
Artigo em Inglês | MEDLINE | ID: mdl-21842035

RESUMO

Flavylium compounds are versatile molecules that comprise anthocyanins, the ubiquitous colorants used by Nature to confer colour to most flowers and fruits. They have found a wide range of applications in human technology, from the millenary colour paints described by the Roman architect Vitruvius, to their use as food additives, combining colour and antioxidant effects, and even as light absorbers in solar cells aiming at a greener solar energy conversion. Their rich complexity derives in part from their ability to switch between a variety of species (flavylium cations, neutral quinoidal bases, hemiketals and chalcones, and negatively charged phenolates) by means of external stimuli, such as pH, temperature and light. This critical review describes (i) the historical advancements in the understanding of the equilibria of their chemical reaction networks; (ii) their thermodynamics and kinetics; (iii) the mechanisms underlying their colour development, such as co-pigmentation and host-guest interactions; (iv) the photophysics and photochemistry that lead to photochromism; and (v) applications in solar cells, models for optical memories, photochromic soft materials such as ionic liquids and gels, and their properties in solid state materials (274 references).

19.
Chem Commun (Camb) ; 59(23): 3431-3434, 2023 Mar 16.
Artigo em Inglês | MEDLINE | ID: mdl-36857686

RESUMO

The tailored design of a light-triggered supramolecular cascade results in an artificial machinery that assimilates the transduction of photons into chemical communication and the final release of a neurotransmitter. This is reminiscent of key steps in the natural vision process.

20.
J Phys Chem A ; 116(31): 8107-18, 2012 Aug 09.
Artigo em Inglês | MEDLINE | ID: mdl-22779919

RESUMO

2-Phenyl-1-benzopyrylium (flavylium) and 2-styryl-1-benzopyrylium (styrylflavylium) cations establish in aqueous solution a series of equilibria defining chemical reaction networks responsive to several stimuli (pH, light, redox potential). Control over the mole fraction distribution of species by applying the appropiate stimuli defines a horizontal approach to supramolecular chemistry, in agreement with the customary bottom-up approach toward complex systems. In this work, we designed an asymmetric styrylchalcone able to cyclize in two different ways, producing two isomeric styrylflavylium cations whose chemical reaction networks are thus interconnected. The chemical reaction networks of 2-(2,4-dihydroxystyryl)-1-benzopyrylium (AH(+)) and 7-hydroxy-2-(4-hydroxystyryl)-1-benzopyrylium (AH(+)(iso)) comprise the usual species observed in flavylium-derived networks, in this case, the styryl derivatives of quinoidal bases, hemiketals, and chalcones. The thermodynamics and kinetics of the crossed networks were characterized by the use of UV-vis absorption and NMR spectroscopy as well as time-resolved pH jumps followed by stopped-flow. The two styrylflavylium cations are connected (isomerize) through two alternative intermediates, the asymmetric trans-styrylchalcone (Ct) and a spiropyran-type intermediate (SP). At pH = 1, AH(+) slowly evolves (k(obs) ≈ 10(-5) s(-1)) to a mixture containing 62% AH(+)(iso) through the Ct intermediate, while at pH = 5, the SP intermediate is involved. The observed rate constants for the conversion of the styrylflavylim cations into equilibrium mixtures containing essentially Ct follow a pH-dependent bell-shaped curve in both networks. While at pH = 1 in the dark, AH(+) evolves to an equilibrium mixture containing predominantly AH(+)(iso), irradiation at λ > 435 nm induces the opposite conversion.


Assuntos
Benzopiranos/química , Estirenos/química , Benzopiranos/síntese química , Concentração de Íons de Hidrogênio , Estrutura Molecular , Estereoisomerismo , Temperatura
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa