Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 78
Filtrar
1.
Int J Mol Sci ; 22(16)2021 Aug 18.
Artigo em Inglês | MEDLINE | ID: mdl-34445602

RESUMO

Cannabis is the most-used recreational drug worldwide, with a high prevalence of use among adolescents. In animal models, long-term adverse effects were reported following chronic adolescent exposure to the main psychotomimetic component of the plant, delta-9-tetrahydrocannabinol (THC). However, these studies investigated the effects of pure THC, without taking into account other cannabinoids present in the cannabis plant. Interestingly, cannabidiol (CBD) content seems to mitigate some of the side effects of THC, at least in adult animals. Thus, in female rats, we evaluated the long-term consequences of a co-administration of THC and CBD at a 3:1 ratio, chosen based on the analysis of recently confiscated illegal cannabis samples in Europe. CBD content is able to mitigate some of the long-term behavioral alterations induced by adolescent THC exposure as well as long-term changes in CB1 receptor and microglia activation in the prefrontal cortex (PFC). We also investigated, for the first time, possible long-term effects of chronic administration of a THC/CBD combination reminiscent of "light cannabis" (CBD:THC in a 33:1 ratio; total THC 0.3%). Repeated administration of this CBD:THC combination has long-term adverse effects on cognition and leads to anhedonia. Concomitantly, it boosts Glutamic Acid Decarboxylase-67 (GAD67) levels in the PFC, suggesting a possible lasting effect on GABAergic neurotransmission.


Assuntos
Comportamento Animal/efeitos dos fármacos , Canabidiol/administração & dosagem , Cognição/efeitos dos fármacos , Dronabinol/administração & dosagem , Alucinógenos/administração & dosagem , Córtex Pré-Frontal/efeitos dos fármacos , Animais , Feminino , Memória/efeitos dos fármacos , Ratos , Ratos Sprague-Dawley , Transmissão Sináptica
2.
Int J Neuropsychopharmacol ; 21(11): 1014-1024, 2018 11 01.
Artigo em Inglês | MEDLINE | ID: mdl-29982505

RESUMO

Background: In rodent models, chronic exposure to cannabis' psychoactive ingredient, Δ9-tetrahydrocannabinol, during adolescence leads to abnormal behavior in adulthood. In female rats, this maladaptive behavior is characterized by endophenotypes for depressive-like and psychotic-like disorders as well as cognitive deficits. We recently reported that most depressive-like behaviors triggered by adolescent Δ9-tetrahydrocannabinol exposure can be rescued by manipulating endocannabinoid signaling in adulthood with the anandamide-inactivating enzyme FAAH inhibitor, URB597. However, the molecular mechanisms underlying URB597's antidepressant-like properties remain to be established. Methods: Here we examined the impact of adult URB597 treatment on the cellular and functional neuroadaptations that occurred in the prefrontal cortex and dentate gyrus of the hippocampus upon Δ9-tetrahydrocannabinol during adolescence through biochemical, morphofunctional, and electrophysiological studies. Results: We found that the positive action of URB597 is associated with the rescue of Δ9-tetrahydrocannabinol-induced deficits in endocannabinoid-mediated signaling and synaptic plasticity in the prefrontal cortex and the recovery of functional neurogenesis in the dentate gyrus of the hippocampus. Moreover, the rescue property of URB597 on depressive-like behavior requires the activity of the CB1 cannabinoid receptor. Conclusions: By providing novel insights into the cellular and molecular mechanisms of URB597 at defined cortical and hippocampal circuits, our results highlight that positive modulation of endocannabinoid-signaling could be a strategy for treating mood alterations secondary to adolescent cannabis use.


Assuntos
Giro Denteado/efeitos dos fármacos , Giro Denteado/metabolismo , Dronabinol/efeitos adversos , Plasticidade Neuronal/efeitos dos fármacos , Córtex Pré-Frontal/efeitos dos fármacos , Córtex Pré-Frontal/metabolismo , Adaptação Psicológica/efeitos dos fármacos , Adaptação Psicológica/fisiologia , Animais , Ácidos Araquidônicos/metabolismo , Benzamidas/farmacologia , Carbamatos/farmacologia , Giro Denteado/crescimento & desenvolvimento , Depressão/tratamento farmacológico , Depressão/metabolismo , Endocanabinoides/metabolismo , Feminino , Abuso de Maconha/tratamento farmacológico , Abuso de Maconha/metabolismo , Neurogênese/efeitos dos fármacos , Neurogênese/fisiologia , Plasticidade Neuronal/fisiologia , Alcamidas Poli-Insaturadas/metabolismo , Córtex Pré-Frontal/crescimento & desenvolvimento , Ratos Sprague-Dawley , Receptor CB1 de Canabinoide/metabolismo , Maturidade Sexual , Transdução de Sinais/efeitos dos fármacos , Sinapses/efeitos dos fármacos , Sinapses/metabolismo , Técnicas de Cultura de Tecidos
3.
J Psychiatry Neurosci ; 43(2): 87-101, 2018 03.
Artigo em Inglês | MEDLINE | ID: mdl-29481316

RESUMO

BACKGROUND: Increasing cannabis consumption among adolescents, studies that link its early use with mental illnesses, and the political debate on cannabis legalization together call for an urgent need to study molecular underpinnings of adolescent brain vulnerability. The emerging role of epigenetic mechanisms in psychiatric diseases led us to hypothesize that epigenetic alterations could play a role in causes and subsequent development of the depressive/psychotic-like phenotype induced by adolescent, but not adult, Δ9-tetrahydrocannabinol (THC) exposure in female rats. METHODS: We performed a time-course analysis of histone modifications, chromatin remodelling enzymes and gene expression in the prefrontal cortex of female rats after adolescent and adult THC exposure. We also administered a specific epigenetic drug (chaetocin) with THC to investigate its impact on THC-induced behavioural alterations. RESULTS: Adolescent THC exposure induced alterations of selective histone modifications (mainly H3K9me3), impacting the expression of genes closely associated with synaptic plasticity. Changes in both histone modifications and gene expression were more widespread and intense after adolescent treatment, suggesting specific adolescent susceptibility. Adolescent THC exposure significantly increased Suv39H1 levels, which could account for the enhanced H3K9me3. Pharmacological blockade of H3K9me3 during adolescent THC treatment prevented THC-induced cognitive deficits, suggesting the relevant role played by H3K9me3 in THC-induced effects. LIMITATIONS: Only female rats were investigated, and the expression studies were limited to a specific subset of genes. CONCLUSION: Through a mechanism involving SUV39H1, THC modifies histone modifications and, thereby, expression of plasticity genes. This pathway appears to be relevant for the development of cognitive deficits.


Assuntos
Comportamento Animal/efeitos dos fármacos , Cromatina/metabolismo , Disfunção Cognitiva/metabolismo , Dronabinol/farmacologia , Expressão Gênica/efeitos dos fármacos , Metiltransferases/biossíntese , Córtex Pré-Frontal/metabolismo , Proteínas Repressoras/biossíntese , Fatores Etários , Animais , Disfunção Cognitiva/induzido quimicamente , Dronabinol/antagonistas & inibidores , Feminino , Histonas/biossíntese , Piperazinas/farmacologia , Ratos
4.
J Lipid Res ; 58(2): 301-316, 2017 02.
Artigo em Inglês | MEDLINE | ID: mdl-27903595

RESUMO

Imbalanced dietary n-3 and n-6 PUFA content has been associated with a number of neurological conditions. Endocannabinoids are n-6 PUFA derivatives, whose brain concentrations are sensitive to modifications of fatty acid composition of the diet and play a central role in the regulation of mood and cognition. As such, the endocannabinoid system appears to be an ideal candidate for mediating the effects of dietary fatty acids on mood and cognition. Lifelong administration of isocaloric α-linolenic acid (ALA)-deficient and -enriched diets induced short-term memory deficits, whereas only dietary ALA enrichment altered emotional reactivity in adult male rats compared with animals fed a standard diet that was balanced in ALA/linoleic acid (LA) ratio. In the prefrontal cortex, both diets reduced 2-AG levels and increased MAG lipase expression, whereas only the enriched diet reduced AEA levels, simultaneously increasing FAAH expression. In the hippocampus, an ALA-enriched diet decreased AEA content and NAPE-PLD expression, and reduced 2-AG content while increasing MAG lipase expression. These findings highlight the importance of a diet balanced in fatty acid content for normal brain functions and to support a link between dietary ALA, the brain endocannabinoid system, and behavior, which indicates that dietary ALA intake is a sufficient condition for altering the endocannabinoid system in brain regions modulating mood and cognition.


Assuntos
Encéfalo/metabolismo , Cognição/fisiologia , Emoções/fisiologia , Endocanabinoides/metabolismo , Animais , Encéfalo/efeitos dos fármacos , Encéfalo/patologia , Cognição/efeitos dos fármacos , Dieta , Gorduras na Dieta/administração & dosagem , Gorduras na Dieta/metabolismo , Emoções/efeitos dos fármacos , Ácidos Graxos Ômega-3/administração & dosagem , Ácidos Graxos Ômega-3/metabolismo , Ácidos Graxos Ômega-6/administração & dosagem , Ácidos Graxos Ômega-6/metabolismo , Humanos , Ácido Linoleico/administração & dosagem , Ácido Linoleico/metabolismo , Memória de Curto Prazo/efeitos dos fármacos , Memória de Curto Prazo/fisiologia , Ratos , Ácido alfa-Linolênico/administração & dosagem , Ácido alfa-Linolênico/metabolismo
5.
Pharmacol Res ; 115: 209-217, 2017 01.
Artigo em Inglês | MEDLINE | ID: mdl-27890818

RESUMO

Clinical and pre-clinical observations indicate that anabolic-androgenic steroids can induce neurobiological changes that alter the rewarding effects of drugs of abuse. In this study, we investigated the effect of the anabolic steroid nandrolone on the rewarding properties of the cannabinoid CB1 receptor agonist WIN55,212-2 (WIN) in rats. Lister Hooded male rats were treated intramuscularly with nandrolone (15mg/kg) or vehicle for 14 consecutive days, and then allowed to self-administer WIN (12.5µg/kg/infusion) intravenously. After reaching stable drug intake, self-administration behavior was extinguished to examine drug- and cue-induced reinstatement of cannabinoid-seeking behavior. Other behavioral parameters presumed to influence drug-taking and drug-seeking behaviors were examined to gain more insight into the behavioral specificity of nandrolone treatment. Finally, animals were sacrificed for analysis of CB1 receptor density and function in selected brain areas. We found that nandrolone-treated rats self-administered up to 2 times more cannabinoid than vehicle-treated rats, but behaved similarly to control rats when tested for drug- and cue-induced reinstatement of cannabinoid-seeking behavior. Enhanced cannabinoid intake by nandrolone-treated rats was not accompanied by changes in locomotor activity, sensorimotor gating, or memory function. However, our molecular data show that after chronic WIN self-administration nandrolone-treated rats display altered CB1 receptor density and function in selected brain areas. We hypothesize that increased cannabinoid self-administration in nandrolone-treated rats results from a nandrolone-induced decrease in reward function, which rats seem to compensate by voluntarily increasing their cannabinoid intake. Altogether, our findings corroborate the hypothesis that chronic exposure to anabolic-androgenic steroids induces dysfunction of the reward pathway in rats and might represent a potential risk factor for abuse of cannabis and other drugs in humans.


Assuntos
Anabolizantes/administração & dosagem , Encéfalo/efeitos dos fármacos , Canabinoides/administração & dosagem , Nandrolona/administração & dosagem , Receptor CB1 de Canabinoide/metabolismo , Esteroides/administração & dosagem , Animais , Locomoção/efeitos dos fármacos , Masculino , Memória/efeitos dos fármacos , Ratos , Recompensa , Autoadministração/métodos , Filtro Sensorial/efeitos dos fármacos
6.
Int J Mol Sci ; 18(9)2017 Sep 07.
Artigo em Inglês | MEDLINE | ID: mdl-28880200

RESUMO

Autism spectrum disorder (ASD) defines a group of neurodevelopmental disorders whose symptoms include impaired communication and social interaction with restricted or repetitive motor movements, frequently associated with general cognitive deficits. Although it is among the most severe chronic childhood disorders in terms of prevalence, morbidity, and impact to the society, no effective treatment for ASD is yet available, possibly because its neurobiological basis is not clearly understood hence specific drugs have not yet been developed. The endocannabinoid (EC) system represents a major neuromodulatory system involved in the regulation of emotional responses, behavioral reactivity to context, and social interaction. Furthermore, the EC system is also affected in conditions often present in subsets of patients diagnosed with ASD, such as seizures, anxiety, intellectual disabilities, and sleep pattern disturbances. Despite the indirect evidence suggestive of an involvement of the EC system in ASD, only a few studies have specifically addressed the role of the EC system in the context of ASD. This review describes the available data on the investigation of the presence of alterations of the EC system as well as the effects of its pharmacological manipulations in animal models of ASD-like behaviors.


Assuntos
Transtorno do Espectro Autista/metabolismo , Endocanabinoides/metabolismo , Animais , Modelos Animais de Doenças , Humanos , Receptores de Canabinoides/metabolismo
7.
Pharmacol Res ; 111: 459-470, 2016 09.
Artigo em Inglês | MEDLINE | ID: mdl-27422357

RESUMO

Cannabis use has been frequently associated with sex-dependent effects on brain and behavior. We previously demonstrated that adult female rats exposed to delta-9-tetrahydrocannabinol (THC) during adolescence develop long-term alterations in cognitive performances and emotional reactivity, whereas preliminary evidence suggests the presence of a different phenotype in male rats. To thoroughly depict the behavioral phenotype induced by adolescent THC exposure in male rats, we treated adolescent animals with increasing doses of THC twice a day (PND 35-45) and, at adulthood, we performed a battery of behavioral tests to measure affective- and psychotic-like symptoms as well as cognition. Poorer memory performance and psychotic-like behaviors were present after adolescent THC treatment in male rats, without alterations in the emotional component. At cellular level, the expression of the NMDA receptor subunit, GluN2B, as well as the levels of the AMPA subunits, GluA1 and GluA2, were significantly increased in hippocampal post-synaptic fractions from THC-exposed rats compared to controls. Furthermore, increases in the levels of the pre-synaptic marker, synaptophysin, and the post-synaptic marker, PSD95, were also present. Interestingly, KCl-induced [(3)H]D-ASP release from hippocampal synaptosomes, but not gliosomes, was significantly enhanced in THC-treated rats compared to controls. Moreover, in the same brain region, adolescent THC treatment also resulted in a persistent neuroinflammatory state, characterized by increased expression of the astrocyte marker, GFAP, increased levels of the pro-inflammatory markers, TNF-α, iNOS and COX-2, as well as a concomitant reduction of the anti-inflammatory cytokine, IL-10. Notably, none of these alterations was observed in the prefrontal cortex (PFC). Together with our previous findings in females, these data suggest that the sex-dependent detrimental effects induced by adolescent THC exposure on adult behavior may rely on its ability to trigger different region-dependent changes in glutamate synapse and glial cells. The phenotype observed in males is mainly associated with marked dysregulations in the hippocampus, whereas the prevalence of alterations in the emotional sphere in females is associated with profound changes in the PFC.


Assuntos
Astrócitos/efeitos dos fármacos , Dronabinol/farmacologia , Hipocampo/efeitos dos fármacos , Envelhecimento/fisiologia , Animais , Comportamento Animal/efeitos dos fármacos , Ácido Glutâmico , Hipocampo/metabolismo , Relações Interpessoais , Masculino , Memória/efeitos dos fármacos , Fenótipo , Córtex Pré-Frontal/efeitos dos fármacos , Córtex Pré-Frontal/metabolismo , Ratos Sprague-Dawley , Receptores Ionotrópicos de Glutamato/metabolismo , Natação , Sinapses/efeitos dos fármacos
8.
Neurobiol Dis ; 73: 60-9, 2015 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-25281318

RESUMO

Current concepts suggest that exposure to THC during adolescence may act as a risk factor for the development of psychiatric disorders later in life. However, the molecular underpinnings of this vulnerability are still poorly understood. To analyze this, we investigated whether and how THC exposure in female rats interferes with different maturational events occurring in the prefrontal cortex during adolescence through biochemical, pharmacological and electrophysiological means. We found that the endocannabinoid system undergoes maturational processes during adolescence and that THC exposure disrupts them, leading to impairment of both endocannabinoid signaling and endocannabinoid-mediated LTD in the adult prefrontal cortex. THC also altered the maturational fluctuations of NMDA subunits, leading to larger amounts of gluN2B at adulthood. Adult animals exposed to THC during adolescence also showed increased AMPA gluA1 with no changes in gluA2 subunits. Finally, adolescent THC exposure altered cognition at adulthood. All these effects seem to be triggered by the disruption of the physiological role played by the endocannabinoid system during adolescence. Indeed, blockade of CB1 receptors from early to late adolescence seems to prevent the occurrence of pruning at glutamatergic synapses. These results suggest that vulnerability of adolescent female rats to long-lasting THC adverse effects might partly reside in disruption of the pivotal role played by the endocannabinoid system in the prefrontal cortex maturation.


Assuntos
Agonistas de Receptores de Canabinoides/farmacologia , Deficiências do Desenvolvimento/induzido quimicamente , Dronabinol/farmacologia , Córtex Pré-Frontal/efeitos dos fármacos , Córtex Pré-Frontal/fisiologia , Fatores Etários , Animais , Cicloexanóis/farmacocinética , Maleato de Dizocilpina/farmacocinética , Estradiol/sangue , Ciclo Estral/efeitos dos fármacos , Antagonistas de Aminoácidos Excitatórios/farmacocinética , Feminino , Técnicas In Vitro , Neuritos/efeitos dos fármacos , Piperidinas/farmacologia , Córtex Pré-Frontal/diagnóstico por imagem , Córtex Pré-Frontal/ultraestrutura , Pirazóis/farmacologia , Cintilografia , Ratos , Ratos Sprague-Dawley , Receptores de Glutamato/metabolismo , Potenciais Sinápticos/efeitos dos fármacos , Trítio/farmacocinética
9.
Handb Exp Pharmacol ; 231: 261-83, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-26408164

RESUMO

Preclinical and clinical data fully support the involvement of the endocannabinoid system in the etiopathogenesis of several mental diseases. In this review we will briefly summarize the most common alterations in the endocannabinoid system, in terms of cannabinoid receptors and endocannabinoid levels, present in mood disorders (anxiety, posttraumatic stress disorder, depression, bipolar disorder, and suicidality) as well as psychosis (schizophrenia) and autism. The arising picture for each pathology is not always straightforward; however, both animal and human studies seem to suggest that pharmacological modulation of this system might represent a novel approach for treatment.


Assuntos
Transtorno Autístico/metabolismo , Encéfalo/metabolismo , Endocanabinoides/metabolismo , Transtornos do Humor/metabolismo , Transtornos Psicóticos/metabolismo , Animais , Transtorno Autístico/tratamento farmacológico , Transtorno Autístico/fisiopatologia , Transtorno Autístico/psicologia , Encéfalo/efeitos dos fármacos , Encéfalo/fisiopatologia , Agonistas de Receptores de Canabinoides/uso terapêutico , Antagonistas de Receptores de Canabinoides/uso terapêutico , Humanos , Transtornos do Humor/tratamento farmacológico , Transtornos do Humor/fisiopatologia , Transtornos do Humor/psicologia , Transtornos Psicóticos/tratamento farmacológico , Transtornos Psicóticos/fisiopatologia , Transtornos Psicóticos/psicologia , Receptor CB1 de Canabinoide/metabolismo , Receptor CB2 de Canabinoide/metabolismo , Transdução de Sinais
10.
Neurobiol Dis ; 63: 35-47, 2014 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-24200867

RESUMO

Although several findings indicate an association between adolescent cannabis abuse and the risk to develop schizophrenia later in life, the evidence for a causal relationship is still inconclusive. In the present study, we investigated the emergence of psychotic-like behavior in adult female rats chronically exposed to delta-9-tetrahydrocannabinol (THC) during adolescence. To this aim, female Sprague-Dawley rats were treated with THC during adolescence (PND 35-45) and, in adulthood (PND 75), a series of behavioral tests and biochemical assays were performed in order to investigate the long-term effects of adolescent THC exposure. Adolescent THC pretreatment leads to long-term behavioral alterations, characterized by recognition memory deficits, social withdrawal, altered emotional reactivity and sensitization to the locomotor activating effects of acute PCP. Moreover, since cortical disinhibition seems to be a key feature of many different animal models of schizophrenia and GABAergic hypofunction in the prefrontal cortex (PFC) has been observed in postmortem brains from schizophrenic patients, we then investigated the long-lasting consequences of adolescent THC exposure on GABAergic transmission in the adult rat PFC. Biochemical analyses revealed that adolescent THC exposure results in reduced GAD67 and basal GABA levels within the adult PFC. GAD67 expression is reduced both in parvalbumin (PV)- and cholecystokinin (CCK)-containing interneurons; this alteration may be related to the altered emotional reactivity triggered by adolescent THC, as silencing PFC GAD67 expression through a siRNA-mediated approach is sufficient to impact rats' behavior in the forced swim test. Finally, the cellular underpinnings of the observed sensitized response to acute PCP in adult THC-treated rats could be ascribed to the increased cFos immunoreactivity and glutamate levels in the PFC and dorsal striatum. The present findings support the hypothesis that adolescent THC exposure may represent a risk factor for the development of a complex psychotic-like behavior in adulthood.


Assuntos
Agonistas de Receptores de Canabinoides/toxicidade , Dronabinol/toxicidade , Córtex Pré-Frontal/metabolismo , Transtornos Psicóticos/etiologia , Transtornos Psicóticos/patologia , Transmissão Sináptica/fisiologia , Ácido gama-Aminobutírico/metabolismo , Fatores Etários , Animais , Animais Recém-Nascidos , Modelos Animais de Doenças , Relação Dose-Resposta a Droga , Antagonistas de Aminoácidos Excitatórios/farmacologia , Feminino , Glutamato Descarboxilase/metabolismo , Atividade Motora/efeitos dos fármacos , Fenciclidina/farmacologia , Córtex Pré-Frontal/efeitos dos fármacos , Ratos , Ratos Sprague-Dawley , Reconhecimento Psicológico/efeitos dos fármacos , Comportamento Estereotipado/efeitos dos fármacos , Transmissão Sináptica/efeitos dos fármacos
11.
Pharmacol Res ; 74: 23-33, 2013 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-23680694

RESUMO

Early life stress has been associated with several psychiatric disorders, including drug addiction. Actually, maternal deprivation (MD) alters the endocannabinoid system, which participates in motivation and reward for drugs, including cocaine. At youth, the rate of cocaine abuse is alarmingly increasing. Herein, we have investigated the consequences of MD and/or adolescent cocaine exposure in brain CB1Rs and CB2Rs in immune tissues. Control and maternally deprived (24h on postnatal day, pnd, 9) male and female Wistar rats were administered cocaine (8mg/kg/day) or saline during adolescence (pnd 28-42). At adulthood, [(3)H]-CP-55,940 autoradiographic binding was employed for the analysis of CB1R density and CP-55,940-stimulated [(35)S]-GTPgammaS binding for CB1R functionality; CB2R expression was analyzed by Western blotting. Sex differences in CB1R expression and functionality were found, and MD induced important and enduring sex-dependent changes. In addition, the plastic changes induced by adolescent cocaine administration in brain CB1Rs were differentially influenced by early life events. MD increased spleen CB2R expression while adolescent cocaine administration attenuated this effect; cocaine exposure also diminished CB2R expression in bone marrow. Present findings provide evidence for changes in brain CB1R expression and functionality and immune CB2R expression as a consequence of early life stress and adolescent cocaine exposure, and indicate functional interactions between both treatments, which in many regions differ between males and females.


Assuntos
Encéfalo/metabolismo , Cocaína/farmacologia , Privação Materna , Receptor CB1 de Canabinoide/metabolismo , Receptor CB2 de Canabinoide/metabolismo , Animais , Encéfalo/efeitos dos fármacos , Feminino , Masculino , Ratos , Ratos Wistar , Caracteres Sexuais
12.
Br J Clin Pharmacol ; 75(2): 303-12, 2013 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-22506672

RESUMO

Over the past years, several lines of evidence support an antitumourigenic effect of cannabinoids including Δ(9)-tetrahydrocannabinol (Δ(9)-THC), synthetic agonists, endocannabinoids and endocannabinoid transport or degradation inhibitors. Indeed, cannabinoids possess anti-proliferative and pro-apoptotic effects and they are known to interfere with tumour neovascularization, cancer cell migration, adhesion, invasion and metastasization. However, the clinical use of Δ(9)-THC and additional cannabinoid agonists is often limited by their unwanted psychoactive side effects, and for this reason interest in non-psychoactive cannabinoid compounds with structural affinity for Δ(9)-THC, such as cannabidiol (CBD), has substantially increased in recent years. The present review will focus on the efficacy of CBD in the modulation of different steps of tumourigenesis in several types of cancer and highlights the importance of exploring CBD/CBD analogues as alternative therapeutic agents.


Assuntos
Anticarcinógenos/uso terapêutico , Canabidiol/uso terapêutico , Neoplasias/tratamento farmacológico , Moduladores de Receptores de Canabinoides/farmacologia , Humanos
13.
Methods Mol Biol ; 2576: 181-188, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36152186

RESUMO

Autoradiography of radiolabeled GTPγS ([35S]GTPγS) binding is a relevant technique to study the function of G protein-coupled receptors (GPCRs) ex vivo. Here, we describe the protocol for such a method, suitable for investigating CB1 receptor functionality in tissue slices from rodent brains.


Assuntos
Encéfalo , Receptores Acoplados a Proteínas G , Autorradiografia , Encéfalo/metabolismo , Guanosina 5'-O-(3-Tiotrifosfato)/metabolismo , Receptores Acoplados a Proteínas G/metabolismo , Radioisótopos de Enxofre/metabolismo
14.
Br J Pharmacol ; 180(21): 2777-2801, 2023 11.
Artigo em Inglês | MEDLINE | ID: mdl-37311647

RESUMO

BACKGROUND AND PURPOSE: Psychotic disorders have been reported in long-term users of synthetic cannabinoids. This study aims at investigating the long-lasting effects of repeated JWH-018 exposure. EXPERIMENTAL APPROACH: Male CD-1 mice were injected with vehicle, JWH-018 (6 mg·kg-1 ), the CB1 -antagonist NESS-0327 (1 mg·kg-1 ) or co-administration of NESS-0327 and JWH-018, every day for 7 days. After 15 or 16 days washout, we investigated the effects of JWH-018 on motor function, memory, social dominance and prepulse inhibition (PPI). We also evaluated glutamate levels in dialysates from dorsal striatum, striatal dopamine content and striatal/hippocampal neuroplasticity focusing on the NMDA receptor complex and the neurotrophin BDNF. These measurements were accompanied by in vitro electrophysiological evaluations in hippocampal preparations. Finally, we investigated the density of CB1 receptors and levels of the endocannabinoid anandamide (AEA) and 2-arachidonoylglycerol (2-AG) and their main synthetic and degrading enzymes in the striatum and hippocampus. KEY RESULTS: The repeated treatment with JWH-018 induced psychomotor agitation while reducing social dominance, recognition memory and PPI in mice. JWH-018 disrupted hippocampal LTP and decreased BDNF expression, reduced the synaptic levels of NMDA receptor subunits and decreased the expression of PSD95. Repeated exposure to JWH-018, reduced hippocampal CB1 receptor density and induced a long-term alteration in AEA and 2-AG levels and their degrading enzymes, FAAH and MAGL, in the striatum. CONCLUSION AND IMPLICATIONS: Our findings suggest that repeated administration of a high dose of JWH-018 leads to the manifestation of psychotic-like symptoms accompanied by alterations in neuroplasticity and change in the endocannabinoid system.


Assuntos
Canabinoides , Disfunção Cognitiva , Camundongos , Masculino , Animais , Endocanabinoides/metabolismo , Fator Neurotrófico Derivado do Encéfalo/metabolismo , Receptores de N-Metil-D-Aspartato , Canabinoides/farmacologia , Plasticidade Neuronal , Receptor CB1 de Canabinoide/metabolismo
15.
Int J Neuropsychopharmacol ; 15(2): 267-80, 2012 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-20923599

RESUMO

In this work we investigated the ability of AM251 to reverse schizophrenia-like symptoms produced by a neurodevelopmental animal model based on a social isolation procedure. First, we assessed the validity of our isolation-rearing protocol and, as expected, isolation-reared rats showed hyperlocomotion in a novel environment, cognitive impairment in the novel object recognition (NOR) test and a significant increase in the number of aggressive behaviours in the social interaction test compared to group-housed controls. This behavioural picture was associated with a reduction in CB1 receptor/G protein coupling in specific brain areas as well as reduced c-Fos immunoreactivity in the prefrontal cortex and caudate putamen. In this model, chronic but not acute treatment with the CB1 receptor antagonist AM251 counteracted isolation-induced cognitive impairment in the NOR test and aggressive behaviours in the social interaction test. This behavioural recovery was accompanied by the rescue of CB1 receptor functionality and c-Fos levels in all brain regions altered in isolation-reared rats. Moreover, chronic AM251 also increased c-Fos immunoreactivity in the nucleus accumbens, as previously demonstrated for antipsychotic drugs. Interestingly, the behavioural recovery due to chronic AM251 administration persisted until 10 d after discontinuing the treatment, indicating a long-lasting effect of the cannabinoid antagonist on psychotic-like symptoms.


Assuntos
Antipsicóticos/administração & dosagem , Piperidinas/administração & dosagem , Transtornos Psicóticos/tratamento farmacológico , Pirazóis/administração & dosagem , Receptor CB1 de Canabinoide/antagonistas & inibidores , Recuperação de Função Fisiológica/efeitos dos fármacos , Isolamento Social/psicologia , Doença Aguda , Animais , Canabinoides/antagonistas & inibidores , Canabinoides/metabolismo , Relações Interpessoais , Masculino , Transtornos Psicóticos/metabolismo , Transtornos Psicóticos/psicologia , Ratos , Ratos Sprague-Dawley , Receptor CB1 de Canabinoide/metabolismo , Resultado do Tratamento
16.
IUBMB Life ; 63(6): 446-51, 2011 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-21557446

RESUMO

Cannabis is the most commonly used illicit drug worldwide. Cannabis users also appear to use other psychoactive drugs more frequently than noncannabis users. Here, Δ9-tetrahydrocannabinol (THC) and diazepam binding to human serum albumin (HSA) and HSA-heme is reported. THC binds to two different binding sites of HSA (K(d1) ≤ 10(-7) M and K(d2) = 10(-3)M) without affecting diazepam binding (K(d) = 1.2 × 10(-5) M). THC binding to the high-affinity site accounts for the low free fraction of the drug in plasma. Moreover, THC increases the affinity of heme for HSA. Accordingly, the affinity of THC for HSA-heme is higher than that for HSA. THC could bind to FA2 and FA7 sites, as substantiated by docking simulations; nevertheless, the observed allosteric effect(s) suggests that the primary binding site of THC is the FA2 cleft that positively modulates heme affinity. Possibly, the HSA conformational transition(s) induced by THC binding could account for drug delivery to the liver through receptor- mediated endocytosis.


Assuntos
Analgésicos não Narcóticos/metabolismo , Ansiolíticos/metabolismo , Diazepam/metabolismo , Dronabinol/metabolismo , Albumina Sérica/metabolismo , Analgésicos não Narcóticos/química , Ansiolíticos/química , Sítios de Ligação , Diazepam/química , Dronabinol/química , Humanos , Modelos Moleculares , Ligação Proteica , Estrutura Terciária de Proteína , Albumina Sérica/química
17.
Int J Neuropsychopharmacol ; 14(1): 17-28, 2011 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-20196921

RESUMO

Clinical and laboratory studies suggest that the endocannabinoid system is involved in schizophrenia disorders. Recent evidence indicates that cannabinoid receptor (CB1) antagonists have a pharmacological profile similar to antipsychotic drugs. We investigated the behavioural and biochemical effects of the CB1 antagonist AM251 in a phencyclidine (PCP) animal paradigm modelling the cognitive deficit and some negative symptoms of schizophrenia. Chronic AM251 (0.5 mg/kg for 3 wk) improved the PCP-altered recognition memory, as indicated by a significant amelioration of the discrimination index compared to chronic PCP alone (2.58 mg/kg for 1 month). AM251 also reversed the PCP-induced increase in immobility in the forced swim test resembling avolition, a negative sign of schizophrenia. In order to analyse the mechanisms underlying these behaviours, we studied the effects of AM251 on the endocannabinoid system (in terms of CB1 receptor density and functional activity and endocannabinoid levels) and c-Fos protein expression. The antagonist counteracted the alterations in CB1 receptor function induced by PCP in selected cerebral regions involved in schizophrenia. In addition, in the prefrontal cortex, the key region in the integration of cognitive and negative functions, AM251 markedly raised anandamide levels and reversed the PCP-induced increase of 2-arachidonoylglycerol concentrations. Finally, chronic AM251 fully reversed the PCP-elicited expression of c-Fos protein in the prefrontal cortical region. These findings suggest an antipsychotic-like profile of the CB1 cannabinoid receptor antagonist which, by restoring the function of the endocannabinoid system, might directly or indirectly normalize some of the neurochemical maladaptations present in this schizophrenia-like animal model.


Assuntos
Comportamento Animal/efeitos dos fármacos , Antagonistas de Aminoácidos Excitatórios/farmacologia , Fenciclidina/toxicidade , Piperidinas/farmacologia , Pirazóis/farmacologia , Receptor CB1 de Canabinoide/antagonistas & inibidores , Esquizofrenia/tratamento farmacológico , Animais , Moduladores de Receptores de Canabinoides/metabolismo , Modelos Animais de Doenças , Antagonistas de Aminoácidos Excitatórios/metabolismo , Antagonistas de Aminoácidos Excitatórios/toxicidade , Hipocampo/efeitos dos fármacos , Hipocampo/fisiopatologia , Masculino , Atividade Motora/efeitos dos fármacos , Córtex Pré-Frontal/efeitos dos fármacos , Córtex Pré-Frontal/fisiopatologia , Ratos , Esquizofrenia/induzido quimicamente , Esquizofrenia/fisiopatologia , Fatores de Tempo
18.
Nat Neurosci ; 10(7): 870-9, 2007 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-17558404

RESUMO

Although endocannabinoids constitute one of the first lines of defense against pain, the anatomical locus and the precise receptor mechanisms underlying cannabinergic modulation of pain are uncertain. Clinical exploitation of the system is severely hindered by the cognitive deficits, memory impairment, motor disturbances and psychotropic effects resulting from the central actions of cannabinoids. We deleted the type 1 cannabinoid receptor (CB1) specifically in nociceptive neurons localized in the peripheral nervous system of mice, preserving its expression in the CNS, and analyzed these genetically modified mice in preclinical models of inflammatory and neuropathic pain. The nociceptor-specific loss of CB1 substantially reduced the analgesia produced by local and systemic, but not intrathecal, delivery of cannabinoids. We conclude that the contribution of CB1-type receptors expressed on the peripheral terminals of nociceptors to cannabinoid-induced analgesia is paramount, which should enable the development of peripherally acting CB1 analgesic agonists without any central side effects.


Assuntos
Analgesia , Canabinoides/farmacologia , Nociceptores/efeitos dos fármacos , Sistema Nervoso Periférico/efeitos dos fármacos , Receptor CB1 de Canabinoide/efeitos dos fármacos , Alelos , Animais , Moduladores de Receptores de Canabinoides/fisiologia , Sistema Nervoso Central/efeitos dos fármacos , Primers do DNA , Eletrofisiologia , Gânglios Espinais/citologia , Gânglios Espinais/fisiologia , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Fibras Nervosas Amielínicas/efeitos dos fármacos , Fibras Nervosas Amielínicas/fisiologia , Neurônios Aferentes/fisiologia , Doenças do Sistema Nervoso Periférico/patologia , Receptor CB1 de Canabinoide/genética
19.
Pharmacol Ther ; 226: 107878, 2021 10.
Artigo em Inglês | MEDLINE | ID: mdl-33895189

RESUMO

Recent years have seen a renewed interest on the possible therapeutic exploitations of specific cannabinoids derived from the Cannabis sativa plant. Thus far, the most studied non-psychotomimetic cannabinoid is cannabidiol (CBD), which has shown promising therapeutic potential for relieving a variety of neurological diseases. However, also its propyl analogue, cannabidivarin (CBDV), has recently gained much attention as a potential therapeutic agent for the management of disabling neurological conditions. This review aims at providing a comprehensive and updated overview of the available animal and human data, which have investigated the possible therapeutic potential of CBDV for the management of epilepsy and autism spectrum disorder.


Assuntos
Transtorno do Espectro Autista , Canabinoides , Epilepsia , Animais , Transtorno do Espectro Autista/tratamento farmacológico , Canabinoides/uso terapêutico , Epilepsia/tratamento farmacológico , Humanos
20.
Adicciones ; 22(3): 185-9, 2010.
Artigo em Espanhol | MEDLINE | ID: mdl-20802980

RESUMO

Marijuana is consistently the most widely used illicit drug among teenagers and most users first experiment it in adolescence. Adolescence is a critical period between childhood and adulthood, including not only reproductive maturation, but also cognitive, emotional and social maturation. In this period adolescent brain is still in transition differing anatomically and neurochemically from the adult's one. The endocannabinoid system is an important determinant for cerebral maturation, therefore its strong stimulation by the delta-9- tetrahydrocannabinol, that acts through the endocannabinoid system, might lead to subtle but lasting neurobiological changes that can affect adult brain functions and behaviour. We summarize the more recent researches investigating the relationships between adolescent exposure to cannabinoids and increased risk for psychotic disease such as schizophrenia, as highlighted by both human and animal studies. Epidemiological evidence suggests that cannabis use is a risk factor for schizophrenia, and an exacerbation of symptoms and worsening of the schizophrenic prognosis may occur in individuals with a predisposition for schizophrenia. The characteristic of adolescent brain probably makes it more vulnerable to cannabis effect producing psychotic like symptoms and possibly cause schizophrenia.


Assuntos
Abuso de Maconha/complicações , Esquizofrenia/epidemiologia , Esquizofrenia/etiologia , Adolescente , Animais , Humanos
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa