Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
1.
JCO Precis Oncol ; 7: e2200300, 2023 01.
Artigo em Inglês | MEDLINE | ID: mdl-36623238

RESUMO

PURPOSE: Programmed cell death protein-1 (PD-1) receptor and ligand interactions are the target of immunotherapies for more than 20 cancer types. Biomarkers that predict response to immunotherapy are microsatellite instability, tumor mutational burden, and programmed death ligand-1 (PD-L1) immunohistochemistry. Structural variations (SVs) in PD-L1 (CD274) and PD-L2 (PDCD1LG2) have been observed in cancer, but the comprehensive landscape is unknown. Here, we describe the genomic landscape of PD-L1 and PD-L2 SVs, their potential impact on the tumor microenvironment, and evidence that patients with these alterations can benefit from immunotherapy. METHODS: We analyzed sequencing data from cancer cases with PD-L1 and PD-L2 SVs across 22 publications and four data sets, including Foundation Medicine Inc, The Cancer Genome Atlas, International Cancer Genome Consortium, and the Oncology Research Information Exchange Network. We leveraged RNA sequencing to evaluate immune signatures. We curated literature reporting clinical outcomes of patients harboring PD-L1 or PD-L2 SVs. RESULTS: Using data sets encompassing 300,000 tumors, we curated 486 cases with SVs in PD-L1 and PD-L2 and observed consistent breakpoint patterns, or hotspots. Leveraging The Cancer Genome Atlas, we observed significant upregulation in PD-L1 expression and signatures for interferon signaling, macrophages, T cells, and immune cell proliferation in samples harboring PD-L1 or PD-L2 SVs. Retrospective review of 12 studies that identified patients with SVs in PD-L1 or PD-L2 revealed > 50% (52/71) response rate to PD-1 immunotherapy with durable responses. CONCLUSION: Our findings show that the 3'-UTR is frequently affected, and that SVs are associated with increased expression of ligands and immune signatures. Retrospective evidence from curated studies suggests this genomic alteration could help identify candidates for PD-1/PD-L1 immunotherapy. We expect these findings will better define PD-L1 and PD-L2 SVs in cancer and lend support for prospective clinical trials to target these alterations.


Assuntos
Antígeno B7-H1 , Neoplasias , Humanos , Antígeno B7-H1/genética , Antígeno B7-H1/metabolismo , Receptor de Morte Celular Programada 1/genética , Ligantes , Estudos Retrospectivos , Estudos Prospectivos , Neoplasias/genética , Neoplasias/terapia , Microambiente Tumoral/genética
2.
Mol Cancer Res ; 19(3): 465-474, 2021 03.
Artigo em Inglês | MEDLINE | ID: mdl-33229401

RESUMO

Microsatellites are short, repetitive segments of DNA, which are dysregulated in mismatch repair-deficient (MMRd) tumors resulting in microsatellite instability (MSI). MSI has been identified in many human cancer types with varying incidence, and microsatellite instability-high (MSI-H) tumors often exhibit increased sensitivity to immune-enhancing therapies such as PD-1/PD-L1 inhibition. Next-generation sequencing (NGS) has permitted advancements in MSI detection, and recent computational advances have enabled characterization of tumor heterogeneity via NGS. However, the evolution and heterogeneity of microsatellite changes in MSI-positive tumors remains poorly described. We determined MSI status in 6 patients using our previously published algorithm, MANTIS, and inferred subclonal composition and phylogeny with Canopy and SuperFreq. We developed a simulated annealing-based method to characterize microsatellite length distributions in specific subclones and assessed the evolution of MSI in the context of tumor heterogeneity. We identified three to eight tumor subclones per patient, and each subclone exhibited MMRd-associated base substitution signatures. We noted that microsatellites tend to shorten over time, and that MMRd fosters heterogeneity by introducing novel mutations throughout the disease course. Some microsatellites are altered among all subclones in a patient, whereas other loci are only altered in particular subclones corresponding to subclonal phylogenetic relationships. Overall, our results indicate that MMRd is a substantial driver of heterogeneity, leading to both MSI and subclonal divergence. IMPLICATIONS: We leveraged subclonal inference to assess clonal evolution based on somatic mutations and microsatellites, which provides insight into MMRd as a dynamic mutagenic process in MSI-H malignancies.


Assuntos
Evolução Clonal/genética , Genômica/métodos , Sequenciamento de Nucleotídeos em Larga Escala/métodos , Instabilidade de Microssatélites , Metástase Neoplásica/genética , Adulto , Idoso , Idoso de 80 Anos ou mais , Feminino , Humanos , Masculino , Pessoa de Meia-Idade
3.
JTO Clin Res Rep ; 2(4): 100164, 2021 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-34590014

RESUMO

INTRODUCTION: Relapsed SCLC is characterized by therapeutic resistance and high mortality rate. Despite decades of research, mechanisms responsible for therapeutic resistance have remained elusive owing to limited tissues available for molecular studies. Thus, an unmet need remains for molecular characterization of relapsed SCLC to facilitate development of effective therapies. METHODS: We performed whole-exome and transcriptome sequencing of metastatic tumor samples procured from research autopsies of five patients with relapsed SCLC. We implemented bioinformatics tools to infer subclonal phylogeny and identify recurrent genomic alterations. We implemented immune cell signature and single-sample gene set enrichment analyses on tumor and normal transcriptome data from autopsy and additional primary and relapsed SCLC data sets. Furthermore, we evaluated T cell-inflamed gene expression profiles in neuroendocrine (ASCL1, NEUROD1) and non-neuroendocrine (YAP1, POU2F3) SCLC subtypes. RESULTS: Exome sequencing revealed clonal heterogeneity (intertumor and intratumor) arising from branched evolution and identified resistance-associated truncal and subclonal alterations in relapsed SCLC. Transcriptome analyses further revealed a noninflamed phenotype in neuroendocrine SCLC subtypes (ASCL1, NEUROD1) associated with decreased expression of genes involved in adaptive antitumor immunity whereas non-neuroendocrine subtypes (YAP1, POU2F3) revealed a more inflamed phenotype. CONCLUSIONS: Our results reveal substantial tumor heterogeneity and complex clonal evolution in relapsed SCLC. Furthermore, we report that neuroendocrine SCLC subtypes are immunologically cold, thus explaining decreased responsiveness to immune checkpoint blockade. These results suggest that the mechanisms of innate and acquired therapeutic resistances are subtype-specific in SCLC and highlight the need for continued investigation to bolster therapy selection and development for this cancer.

4.
Cancers (Basel) ; 13(16)2021 Aug 07.
Artigo em Inglês | MEDLINE | ID: mdl-34439147

RESUMO

BACKGROUND: PPARγ (peroxisome proliferator-activated receptor gamma) is involved in the pathology of numerous diseases, including UM and other types of cancer. Emerging evidence suggests that an interaction between PPARγ and DNMTs (DNA methyltransferase) plays a role in cancer that is yet to be defined. METHODS: The configuration of the repeating elements was performed with CAP3 and MAFFT, and the structural modelling was conducted with HDOCK. An evolutionary action scores algorithm was used to identify oncogenic variants. A systematic bioinformatic appraisal of PPARγ and DNMT1 was performed across 29 tumor types and UM available in The Cancer Genome Atlas (TCGA). RESULTS: PPAR-responsive elements (PPREs) enriched with Alu repeats are associated with different genomic regions, particularly the promotor region of DNMT1. PPARγ-DNMT1 co-expression is significantly associated with several cancers. C-terminals of PPARγ and DNMT1 appear to be the potential protein-protein interaction sites where disease-specific mutations may directly impair the respective protein functions. Furthermore, PPARγ expression could be identified as an additional prognostic marker for UM. CONCLUSIONS: We hypothesize that the function of PPARγ requires an additional contribution of Alu repeats which may directly influence the DNMT1 network. Regarding UM, PPARγ appears to be an additional discriminatory prognostic marker, in particular in disomy 3 tumors.

5.
Cancers (Basel) ; 11(10)2019 Oct 19.
Artigo em Inglês | MEDLINE | ID: mdl-31635116

RESUMO

The BAP1 (BRCA1-associated protein 1) gene is associated with a variety of human cancers. With its gene product being a nuclear ubiquitin carboxy-terminal hydrolase with deubiquitinase activity, BAP1 acts as a tumor suppressor gene with potential pleiotropic effects in multiple tumor types. Herein, we focused specifically on uveal melanoma (UM) in which BAP1 mutations are associated with a metastasizing phenotype and decreased survival rates. We identified the ubiquitin carboxyl hydrolase (UCH) domain as a major hotspot region for the pathogenic mutations with a high evolutionary action (EA) score. This also includes the mutations at conserved catalytic sites and the ones overlapping with the phosphorylation residues. Computational protein interaction studies revealed that distant BAP1-associated protein complexes (FOXK2, ASXL1, BARD1, BRCA1) could be directly impacted by this mutation paradigm. We also described the conformational transition related to BAP1-BRCA-BARD1 complex, which may pose critical implications for mutations, especially at the docking interfaces of these three proteins. The mutations affect - independent of being somatic or germline - the binding affinity of miRNAs embedded within the BAP1 locus, thereby altering the unique regulatory network. Apart from UM, BAP1 gene expression and survival associations were found to be predictive for the prognosis in several (n = 29) other cancer types. Herein, we suggest that although BAP1 is conceptually a driver gene in UM, it might contribute through its interaction partners and its regulatory miRNA network to various aspects of cancer. Taken together, these findings will pave the way to evaluate BAP1 in a variety of other human cancers with a shared mutational spectrum.

6.
Artigo em Inglês | MEDLINE | ID: mdl-31371345

RESUMO

Cholangiocarcinoma is a highly aggressive and lethal malignancy, with limited treatment options available. Recently, FGFR inhibitors have been developed and utilized in FGFR-mutant cholangiocarcinoma; however, resistance often develops and the genomic determinants of resistance are not fully characterized. We completed whole-exome sequencing (WES) of 11 unique tumor samples obtained from a rapid research autopsy on a patient with FGFR-fusion-positive cholangiocarcinoma who initially responded to the pan-FGFR inhibitor, INCB054828. In vitro studies were carried out to characterize the novel FGFR alteration and secondary FGFR2 mutation identified. Multisite WES and analysis of tumor heterogeneity through subclonal inference identified four genetically distinct cancer cell populations, two of which were only observed after treatment. Additionally, WES revealed an FGFR2 N549H mutation hypothesized to confer resistance to the FGFR inhibitor INCB054828 in a single tumor sample. This hypothesis was corroborated with in vitro cell-based studies in which cells expressing FGFR2-CLIP1 fusion were sensitive to INCB054828 (IC50 value of 10.16 nM), whereas cells with the addition of the N549H mutation were resistant to INCB054828 (IC50 value of 1527.57 nM). Furthermore, the FGFR2 N549H secondary mutation displayed cross-resistance to other selective FGFR inhibitors, but remained sensitive to the nonselective inhibitor, ponatinib. Rapid research autopsy has the potential to provide unprecedented insights into the clonal evolution of cancer throughout the course of the disease. In this study, we demonstrate the emergence of a drug resistance mutation and characterize the evolution of tumor subclones within a cholangiocarcinoma disease course.


Assuntos
Colangiocarcinoma/genética , Colangiocarcinoma/metabolismo , Receptor Tipo 2 de Fator de Crescimento de Fibroblastos/genética , Autopsia , Linhagem Celular Tumoral , Evolução Clonal/genética , Resistencia a Medicamentos Antineoplásicos/genética , Humanos , Masculino , Pessoa de Meia-Idade , Morfolinas/farmacologia , Morfolinas/uso terapêutico , Mutação/genética , Inibidores de Proteínas Quinases/uso terapêutico , Pirimidinas/farmacologia , Pirimidinas/uso terapêutico , Pirróis/farmacologia , Pirróis/uso terapêutico , Sequenciamento do Exoma
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa