Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 66
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Chem Rev ; 122(3): 2981-3121, 2022 02 09.
Artigo em Inglês | MEDLINE | ID: mdl-34874709

RESUMO

Presently, conventional technologies in water treatment are not efficient enough to completely mineralize refractory water contaminants. In this context, the implementation of catalytic processes could be an alternative. Despite the advantages provided in terms of kinetics of transformation, selectivity, and energy saving, numerous attempts have not yet led to implementation at an industrial scale. This review examines investigations at different scales for which controversies and limitations must be solved to bridge the gap between fundamentals and practical developments. Particular attention has been paid to the development of solar-driven catalytic technologies and some other emerging processes, such as microwave assisted catalysis, plasma-catalytic processes, or biocatalytic remediation, taking into account their specific advantages and the drawbacks. Challenges for which a better understanding related to the complexity of the systems and the coexistence of various solid-liquid-gas interfaces have been identified.


Assuntos
Purificação da Água , Catálise
2.
Molecules ; 27(23)2022 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-36500481

RESUMO

A rapid, cheap and feasible new approach was used to synthesize the Mg0.375Fe0.375Al0.25-LDH in the presence of tetramethylammonium hydroxide (TMAH), as a nontraditional hydrolysis agent, applying both mechano-chemical (MC) and co-precipitation methods (CP). For comparison, these catalysts were also synthesized using traditional inorganic alkalis. The mechano-chemical method brings several advantages since the number of steps and the energy involved are smaller than in the co-precipitation method, while the use of organic alkalis eliminates the possibility of contaminating the final solid with alkaline cations. The memory effect was also investigated. XRD studies showed Fe3O4 as stable phase in all solids. Regardless of the alkalis and synthesis methods used, the basicity of catalysts followed the trend: mixed oxides > parent LDH > hydrated LDH. The catalytic activity of the catalysts in the Claisen−Schmidt condensation between benzaldehyde and cyclohexanone showed a linear dependence to the basicity values. After 2 h, the calcined sample cLDH-CO32−/OH−-CP provided a conversion value of 93% with a total selectivity toward 2,6-dibenzylidenecyclohexanone. The presence of these catalysts in the reaction media inhibited the oxidation of benzaldehyde to benzoic acid. Meanwhile, for the self-condensation of cyclohexanone, the conversions to mono- and di-condensed compounds did not exceed 3.8%.


Assuntos
Óxidos , Catálise , Oxirredução
3.
Molecules ; 27(16)2022 Aug 18.
Artigo em Inglês | MEDLINE | ID: mdl-36014511

RESUMO

The deep eutectic solvent (DES)-based biocatalysis of l-menthol acylation was designed for the production of fatty acid l-menthyl ester (FME) using fatty acid methyl ester (FAME). The biocatalytic reaction was assisted by a lipase enzyme in the DES reaction medium. ւՒ-menthol and fatty acids (e.g., CA-caprylic acid; OA-oleic acid; LiA-linoleic acid; and LnA-linolenic acid) were combined in the binary mixture of DES. In this way, the DES provided a nonpolar environment for requested homogeneity of a biocatalytic system with reduced impact on the environment. The screening of lipase enzyme demonstrated better performance of immobilized lipase compared with powdered lipase. The performance of the biocatalytic system was evaluated for different DES compositions (type and concentration of the acid component). l-menthol:CA = 73:27 molar ratio allowed it to reach a maximum conversion of 95% methyl lauric ester (MLE) using a NV (Candida antarctica lipase B immobilized on acrylic resin) lipase biocatalyst. The recyclability of biocatalysts under optimum conditions of the system was also evaluated (more than 80% recovered biocatalytic activity was achieved for the tested biocatalysts after five reaction cycles). DES mixtures were characterized based on differential scanning calorimetry (DSC) and refractive index analysis.


Assuntos
Ésteres , Mentol , Acilação , Biocatálise , Enzimas Imobilizadas/química , Ácidos Graxos , Lipase/química , Mentol/química
4.
Inorg Chem ; 60(19): 14820-14830, 2021 Oct 04.
Artigo em Inglês | MEDLINE | ID: mdl-34515470

RESUMO

A molecular precursor approach to titania (anatase) nanopowders modified with different amounts of rare-earth elements (REEs: Eu, Sm, and Y) was developed using the interaction of REE nitrates with titanium alkoxides by a two-step solvothermal-combustion method. The nature of an emerging intermetallic intermediate was revealed unexpectedly for the applied conditions via a single-crystal study of the isolated bimetallic isopropoxide nitrate complex [Ti2Y(iPrO)9(NO3)2], a nonoxo-substituted compound. Powders of the final reaction products were characterized by powder X-ray diffraction, scanning electron microscopy-energy-dispersive spectroscopy, Fourier transform infrared, X-ray photoelectron spectroscopy, Raman spectroscopy, and photoluminescence (PL). The addition of REEs stabilized the anatase phase up to ca. 700 °C before phase transformation into rutile became evident. The photocatalytic activity of titania modified with Eu3+ and Sm3+ was compared with that of Degussa P25 titania as the control. PL studies indicated the incorporation of Eu and Sm cations into titania (anatase) at lower annealing temperatures (500 °C), but an exclusion to the surface occurred when the annealing temperature was increased to 700 °C. The efficiency of the modified titania was inferior to the control titania while illuminated within narrow wavelength intervals (445-465 and 510-530 nm), but when subjected to a wide range of visible radiation, the Eu3+- and Sm3+-modified titania outperformed the control, which was attributed both to doping of the band structure of TiO2 with additional energy levels and to the surface chemistry of the REE-modified titania.

5.
Chem Soc Rev ; 48(8): 2366-2421, 2019 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-30785143

RESUMO

Heterogeneous catalysis is a promising technology for the valorization of renewable biomass to sustainable advanced fuels and fine chemicals. Porosity and nanostructure are the most versatile features of heterogeneous solid catalysts, which can greatly determine the accessibility of specific active sites, reaction mechanisms, and the selectivity of desirable products. Hence, the precise tuning of porosity and nanostructure has been a potential strategy towards developing novel solid catalysts with indispensable characteristics for efficient biomass valorization. Herein, we present a timely and comprehensive review of the recent advances in catalytic biomass conversions over microporous zeolites, mesoporous silicas, and nanostructured metals/metal oxides. This review covers the catalytic processing of both edible (lipids and starch) and non-edible (lignocellulose) biomass as well as their derived compounds, along with a systematic evaluation of catalyst reusability/kinetic/mechanistic aspects in the relevant processes. The key parameters essential for tailoring particle size, morphology, porosity, acid-base, and redox properties of solid catalysts are emphasized, while discussing the ensuing catalytic effects towards the selective conversion of biomass into desirable chemicals. Special attention has been drawn to understand the role of water in liquid phase biomass conversions as well as the hydrothermal stability and the deactivation of nanoporous catalysts. We believe this comprehensive review will provide new insights towards developing state-of-the-art solid catalysts with well-defined porosity and nanoscale properties for viable biomass conversion.

6.
Molecules ; 25(21)2020 Oct 22.
Artigo em Inglês | MEDLINE | ID: mdl-33105761

RESUMO

Nb(0.05 moles%)-zeolites prepared via a post synthesis methodology (BEA, Y, ZSM-5), or a direct sol-gel method (Silicalite-1) were investigated in the hydroxymethylfurfural (HMF) oxidation by both molecular oxygen, in aqueous phase, and organic peroxides, in acetonitrile. The catalysts prepared through the post synthesis methodology (i.e., Nb-Y5, Nb-ZSM25, Nb-Y30, Nb-BEA12, and Nb-BEA18) displayed a mono-modal mesoporosity and contain residual framework Al-acid sites, extra framework isolated Nb(V)O-H and Nb2O5 pore-encapsulated clusters, while Nb-Sil-1, prepared through a direct synthesis procedure, displayed a bimodal micro-mesoporosity and contains only -Nb=O species. These modified zeolites behave as efficient catalysts in both HMF/glucose wet oxidation to succinic acid (SA) and HMF oxidation with organic peroxides to the 2,5-furandicarboxylic acid (FDCA). The catalytic behavior of these catalysts, in terms of conversion and especially the selectivity, mainly depended on the base/acid sites ratio. Thus, the HMF/glucose wet oxidation occurred with a total conversion and a selectivity to SA of 37.7% (from HMF) or 69.1% (from glucose) on the Nb-Y5 catalyst, i.e., the one with the lowest base/acid sites ratio. On the contrary, the catalysts with the highest base/acid sites ratio, i.e., Nb-ZSM25 and Nb-Sil-1, afforded a high catalytic efficiency in HMF oxidation with organic peroxides, in which FDCA was produced with selectivities of 61.3-63.8% for an HMF conversion of 96.7-99.0%.


Assuntos
Ácidos Dicarboxílicos/síntese química , Furanos/síntese química , Nióbio/química , Óxidos/química , Ácido Succínico/síntese química , Zeolitas/química , Adsorção , Catálise , Furaldeído/análogos & derivados , Furaldeído/química , Glucose/química , Nitrogênio/química , Oxirredução , Oxigênio/química , Peróxidos/química , Porosidade
7.
Molecules ; 25(21)2020 Oct 24.
Artigo em Inglês | MEDLINE | ID: mdl-33114355

RESUMO

This paper presents an enzyme biocatalytic method for grafting lignin (grafting bioprocess) with aniline, leading to an amino-derivatized polymeric product with modified properties (e.g., conductivity, acidity/basicity, thermostability and amino-functionalization). Peroxidase enzyme was used as a biocatalyst and H2O2 was used as an oxidation reagent, while the oxidative insertion of aniline into the lignin structure followed a radical mechanism specific for the peroxidase enzyme. The grafting bioprocess was tested in different configurations by varying the source of peroxidase, enzyme concentration and type of lignin. Its performance was evaluated in terms of aniline conversion calculated based on UV-vis analysis. The insertion of amine groups was checked by 1H-NMR technique, where NH protons were detected in the range of 5.01-4.99 ppm. The FTIR spectra, collected before and after the grafting bioprocess, gave evidence for the lignin modification. Finally, the abundance of grafted amine groups was correlated with the decrease of the free -OH groups (from 0.030 to 0.009 -OH groups/L for initial and grafted lignin, respectively). Additionally, the grafted lignin was characterized using conductivity measurements, gel permeation chromatography (GPC), thermogravimetric analysis (TGA), temperature-programmed desorption (TPD-NH3/CO2) and scanning electron microscopy (SEM) analyses. The investigated properties of the developed lignopolymer demonstrated its disposability for specific industrial applications of derivatized lignin.


Assuntos
Compostos de Anilina/química , Lignina/química , Peroxidases/metabolismo , Álcoois/química , Biocatálise , Condutividade Elétrica , Hidrocarbonetos Aromáticos/química , Peróxido de Hidrogênio/química , Concentração de Íons de Hidrogênio , Peso Molecular , Oxirredução , Temperatura
8.
Chem Soc Rev ; 47(22): 8349-8402, 2018 Nov 12.
Artigo em Inglês | MEDLINE | ID: mdl-30226518

RESUMO

Efficient transformation of biomass to value-added chemicals and high-energy density fuels is pivotal for a more sustainable economy and carbon-neutral society. In this framework, developing potential cascade chemical processes using functionalised heterogeneous catalysts is essential because of their versatile roles towards viable biomass valorisation. Advances in materials science and catalysis have provided several innovative strategies for the design of new appealing catalytic materials with well-defined structures and special characteristics. Promising catalytic materials that have paved the way for exciting scientific breakthroughs in biomass upgrading are carbon materials, metal-organic frameworks, solid phase ionic liquids, and magnetic iron oxides. These fascinating catalysts offer unique possibilities to accommodate adequate amounts of acid-base and redox functional species, hence enabling various biomass conversion reactions in a one-pot way. This review therefore aims to provide a comprehensive account of the most significant advances in the development of functionalised heterogeneous catalysts for efficient biomass upgrading. In addition, this review highlights important progress ensued in tailoring the immobilisation of desirable functional groups on particular sites of the above-listed materials, while critically discussing the role of consequent properties on cascade reactions as well as on other vital processes within the bio-refinery. Current challenges and future opportunities towards a rational design of novel functionalised heterogeneous catalysts for sustainable biomass valorisation are also emphasized.

9.
Faraday Discuss ; 206: 535-547, 2018 01 01.
Artigo em Inglês | MEDLINE | ID: mdl-28930329

RESUMO

This study reports the behaviour of SCILL based catalysts in the oxidative S-S coupling of aliphatic and aromatic thiols, namely 1-butanethiol and thiophenol, to dibutyl disulfide and diphenyl disulfide. A range of ionic liquids (1-butyl-3-methylimidazolium bis(trifluoromethylsulfonyl)imide, 1-ethyl-3-methylimidazolium bis(trifluoromethylsulfonyl)imide, 1-butyl-1-methylpyrrolidinium bis(trifluoromethylsulfonyl)imide) and metal supported catalysts (5% Pt/SiO2; 5% Ru/SiO2; 5% Ru/C; 5% Pt/OMS-2) were used to prepare the SCILL catalysts and all were found to be active for the reaction following the trend 5% Pt-OMS-2 > 5% Pt/SiO2 > 5% Ru/C > 5% Ru/SiO2. The presence of SCILL catalysts afforded high selectivity to the disulfide, and the activity of the SCILL catalyst was dependent on the ionic liquid used. A significant increase in the stability of all the supported metal catalysts was found in the presence of the ionic liquid, and there was no change in the selectivity towards disulfides. This demonstrated that the ionic liquids protect the active sites of the catalyst against sulfation, thus providing more stable and active catalysts.

10.
Molecules ; 22(12)2017 Dec 14.
Artigo em Inglês | MEDLINE | ID: mdl-29240713

RESUMO

The one-pot production of succinic acid from glucose was investigated in pure hot water as solvent using Nb (0.02 and 0.05 moles%)-Beta zeolites obtained by a post-synthesis methodology. Structurally, they are comprised of residual framework Al-acid sites, extra-framework isolated Nb (V) and Nb2O5 pore-encapsulated clusters. The Nb-modified Beta-zeolites acted as bi-functional catalysts in which glucose is dehydrated to levulinic acid (LA) which, further, suffers an oxidation process to succinic acid (SA). After the optimization of the reaction conditions, that is, at 180 °C, 18 bar O2, and 12 h reaction time, the oxidation of glucose occurred with a selectivity to succinic acid as high as 84% for a total conversion.


Assuntos
Glucose/química , Nióbio/química , Ácido Succínico/síntese química , Zeolitas/química , Sítios de Ligação , Catálise , Oxirredução , Porosidade , Solventes/química , Propriedades de Superfície , Água
11.
Phys Chem Chem Phys ; 18(27): 18268-77, 2016 Jul 21.
Artigo em Inglês | MEDLINE | ID: mdl-27333335

RESUMO

We investigate the effects of heterovalent co-dopants on the structural and emission properties of 1% Er-CeO2 nanoparticles. The CeO2 oxide host was selected on the basis of its fairly well-understood defect chemistry in either a pure or doped state. As a luminescent activator, Er is acknowledged as an interesting element due to its rich luminescence and excitation properties spanning the visible to near-infrared range. The optically inactive trivalent La and monovalent Li metal ions with a concentration of up to 20% were chosen to presumably generate a variable amount of defects in the Er-CeO2 lattice. It was found that La and Li co-dopants induced distinct changes related to the size, lattice constant, bandgap energy, lattice and surface defects of Er-CeO2. As a result of these changes, a strong modulation of the luminescence intensity and shape was measured using a suite of excitation conditions (charge-transfer absorption band of CeO2, direct/up-conversion into Er absorptions and X-ray excitation modes). The use of Eu as a luminescent probe offered additional information concerning the effects of La/Li co-doping on the local structure surrounding the luminescent activator. Remarkably high percentages of 90 and 98% of the total emission of Er measured between 500 and 1100 nm are measured in the near-infrared region at 980 nm under X-ray and up-conversion excitation at ∼1500 nm, respectively. The optical properties suggest that Li, Er co-doped CeO2 has good potential for therapy and biological imaging.

12.
Angew Chem Int Ed Engl ; 55(2): 607-12, 2016 Jan 11.
Artigo em Inglês | MEDLINE | ID: mdl-26597312

RESUMO

Pyrolysis of chitosan films containing Au(3+) renders 1.1.1 oriented Au nanoplatelets (20 nm lateral size, 3-4 nm height) on a few layers of N-doped graphene (Au/fl-G), while the lateral sides were 0.0.1 oriented. Comparison of the catalytic activity of Au/fl-G films with powders of unoriented Au NPs supported on graphene showed that Au/fl-G films exhibit six orders of magnitude enhancement for three gold-catalyzed reactions, namely, Ullmann-like homocoupling, C-N cross coupling, and the oxidative coupling of benzene to benzoic acid. This enhancement is the result of the defined morphology, facet orientation of Au nanocrystals, and strong gold-graphene interaction.

13.
Phys Chem Chem Phys ; 16(12): 5793-802, 2014 Mar 28.
Artigo em Inglês | MEDLINE | ID: mdl-24535212

RESUMO

We report on structure-property relationships in Pr-doped CeO2 and ZrO2 using X-ray diffraction (XRD), Raman, UV to Vis Diffuse Reflectance (DR-UV/Vis), X-ray Photoelectron (XPS), and luminescence (PL) spectroscopies. Both 3+ and 4+ valence states of Pr are evidenced, irrespective of the host and calcination temperature, T (T = 500 and 1000 °C) with consequences on absorption, surface, vibrational and luminescence properties. Only zirconia represents a suitable host for Pr(3+) luminescence. The distinct trivalent Pr centers and their excitation mechanism are identified in relation to the tetragonal and monoclinic phases of ZrO2. A near-infrared to visible up-conversion (UPC) emission of Pr(3+) is observed upon excitation at 959 nm which occurs, most probably, via a two-photon excited state process. By using a multi-wavelength, time-gated excitation, the UPC process is established as phase selective, i.e. only Pr(3+) located in the monoclinic sites of the mixed phase, monoclinic and tetragonal ZrO2 (T = 1000 °C) contribute to the UPC emission. We believe that, besides the local symmetry, a key role in phase selective UPC is played by the presence of Pr(3+) low-lying 4f 5d levels. To the best of our knowledge, this is the first report of phase selective up-conversion emission in a lanthanide doped multi-phase host.

14.
Phys Chem Chem Phys ; 16(2): 703-10, 2014 Jan 14.
Artigo em Inglês | MEDLINE | ID: mdl-24263248

RESUMO

Although homogeneity at the atomic level of CeO2-ZrO2 with a Ce/Zr atomic ratio close to unity is considered to be one of the main causes for the increased total oxygen storage capacity (OSC), the characterization approaches of homogeneity remain a major challenge. We propose a simple, yet effective method, to assess both structural and compositional homogeneity of CeO2-ZrO2 by using Eu(3+) luminescence measured with time and dual spectral resolution (emission and excitation). For Eu(3+)-CeO2-ZrO2 calcined at 750 °C, the X-ray diffraction, Raman and High-Resolution Transmission Electron Microscopy data converge to a single pseudo-cubic phase. However, the evolution of Eu(3+)-delayed luminescence from cubic ceria-like to tetragonal zirconia-like emission reveals the formation of CeO2- and ZrO2-rich nanodomains and provides evidence for early phase separation. For Eu(3+)-CeO2-ZrO2 calcined at 1000 °C, the emission of Eu(3+) reveals both structural and compositional inhomogeneity. Our study identifies the differences between the local structure properties of CeO2 and ZrO2 parent oxides and CeO2-ZrO2 mixed oxide, also confirming the special chemical environment of the oxygen atoms in the mixed oxide as reported earlier by Extended X-ray Absorption Fine Structure investigations.

15.
Nanomaterials (Basel) ; 14(5)2024 Mar 06.
Artigo em Inglês | MEDLINE | ID: mdl-38470804

RESUMO

The quest for efficient catalysts based on abundant elements that can promote the selective CO2 hydrogenation to green methanol still continues. Most of the reported catalysts are based on Cu/ZnO supported in inorganic oxides, with not much progress with respect to the benchmark Cu/ZnO/Al2O3 catalyst. The use of carbon supports for Cu/ZnO particles is much less explored in spite of the favorable strong metal support interaction that these doped carbons can establish. This manuscript reports the preparation of a series of Cu-ZnO@(N)C samples consisting of Cu/ZnO particles embedded within a N-doped graphitic carbon with a wide range of Cu/Zn atomic ratio. The preparation procedure relies on the transformation of chitosan, a biomass waste, into N-doped graphitic carbon by pyrolysis, which establishes a strong interaction with Cu nanoparticles (NPs) formed simultaneously by Cu2+ salt reduction during the graphitization. Zn2+ ions are subsequently added to the Cu-graphene material by impregnation. All the Cu/ZnO@(N)C samples promote methanol formation in the CO2 hydrogenation at temperatures from 200 to 300 °C, with the temperature increasing CO2 conversion and decreasing methanol selectivity. The best performing Cu-ZnO@(N)C sample achieves at 300 °C a CO2 conversion of 23% and a methanol selectivity of 21% that is among the highest reported, particularly for a carbon-based support. DFT calculations indicate the role of pyridinic N doping atoms stabilizing the Cu/ZnO NPs and supporting the formate pathway as the most likely reaction mechanism.

16.
Nanomaterials (Basel) ; 14(3)2024 Jan 29.
Artigo em Inglês | MEDLINE | ID: mdl-38334548

RESUMO

The primary objective of this research was to develop efficient solid catalysts that can directly convert the lactic acid (LA) obtained from lignocellulosic biomass into alanine (AL) through a reductive amination process. To achieve this, various catalysts based on ruthenium were synthesized using different carriers such as multi-walled carbon nanotubes (MWCNTs), beta-zeolite, and magnetic nanoparticles (MNPs). Among these catalysts, Ru/MNP demonstrated a remarkable yield of 74.0% for alanine at a temperature of 200 °C. This yield was found to be superior not only to the Ru/CNT (55.7%) and Ru/BEA (6.6%) catalysts but also to most of the previously reported catalysts. The characterization of the catalysts and their catalytic results revealed that metallic ruthenium nanoparticles, which were highly dispersed on the external surface of the magnetic carrier, significantly enhanced the catalyst's ability for dehydrogenation. Additionally, the -NH2 basic sites on the catalyst further facilitated the formation of alanine by promoting the adsorption of acidic reactants. Furthermore, the catalyst could be easily separated using an external magnetic field and exhibited the potential for multiple reuses without any significant loss in its catalytic performance. These practical advantages further enhance its appeal for applications in the reductive amination of lactic acid to alanine.

17.
Chemistry ; 19(51): 17439-44, 2013 Dec 16.
Artigo em Inglês | MEDLINE | ID: mdl-24243542

RESUMO

Uniformly mesoporous and thermally robust anatase nanorods were produced with quantitative yield by a simple and efficient one-step approach. The mechanism of this process was revealed by insertion of Eu(3+) cations from the reaction medium as luminescent probes. The obtained structure displays an unusually high porosity, an active surface area of about 300 m(2) g(-1) and a specific capacity of 167 mA h g(-1) at a C/3 rate, making it attractive as an anode electrode for Li-ion batteries. An additional attractive feature is its remarkable thermal stability; heating to 400 °C results in a decrease in the active surface area to a still relatively high value of 110 m(2) g(-1) with conservation of open mesoporosity. Thermal treatment at 800 °C or higher, however, causes transformation into a non-porous rutile monolith, as commonly observed with nanoscale titania.


Assuntos
Fontes de Energia Elétrica , Lítio/química , Nanotubos/química , Titânio/química , Eletrodos , Európio/química , Corantes Fluorescentes/química , Íons/química , Porosidade , Temperatura
18.
Inorg Chem ; 51(15): 7954-6, 2012 Aug 06.
Artigo em Inglês | MEDLINE | ID: mdl-22830491

RESUMO

A neutral 3D metal-organic framework, (3)(∞)[Cu(2)(mand)(2)(hmt)]·H(2)O (1), was constructed from binuclear Cu(2)O(2) alkoxo-bridged nodes, generated by the doubly deprotonated mandelic acid. The nodes are connected by hexamethylenetetramine (hmt) spacers, which act as biconnective bridging ligands, and by carboxylato groups. Channels are observed along the crystallographic c axis. The water molecules from the channels can be easily removed, preserving the architecture of the crystal, which is stable up to 280 °C. The Langmuir surface area was found to be 610 m(2) g(-1). The sorption ability of 1 was investigated using H(2) and CO(2).


Assuntos
Dióxido de Carbono/química , Cobre/química , Hidrogênio/química , Ácidos Mandélicos/química , Metenamina/química , Prótons , Adsorção , Cristalização , Cristalografia por Raios X , Ligantes , Modelos Moleculares , Porosidade , Água
19.
Phys Chem Chem Phys ; 14(37): 12970-81, 2012 Oct 05.
Artigo em Inglês | MEDLINE | ID: mdl-22903237

RESUMO

Pure and europium (Eu(3+)) doped ZrO(2) synthesized by an oil-in-water microemulsion reaction method were investigated by in situ and ex situ X-ray diffraction (XRD), ex situ Raman spectroscopy, high-resolution transmission electron microscopy (HRTEM), steady state and time-resolved photoluminescence (PL) spectroscopies. Based on the Raman spectra excited at three different wavelengths i.e. 488, 514 and 633 nm and measured in the spectral range of 150-4000 cm(-1) the correlation between the phonon spectra of ZrO(2) and luminescence of europium is clearly evidenced. The PL investigations span a variety of steady-state and time resolved measurements recorded either after direct excitation of the Eu(3+) f-f transitions or indirect excitation into UV charge-transfer bands. After annealing at 500 °C, the overall Eu(3+) emission is dominated by Eu(3+) located in tetragonal symmetry lattice sites with a crystal-field splitting of the (5)D(0)-(7)F(1) emission of 20 cm(-1). Annealing of ZrO(2) at 1000 °C leads to a superposition of Eu(3+) emissions from tetragonal and monoclinic lattice sites with monoclinic crystal-field splitting of 200 cm(-1) for the (5)D(0)-(7)F(1) transition. At all temperatures, a non-negligible amorphous/disordered content is also measured and determined to be of monoclinic nature. It was found that the evolutions with calcination temperature of the average PL lifetimes corresponding to europium emission in the tetragonal and monoclinic sites and the monoclinic phase content of the Eu(3+) doped ZrO(2) samples follow a similar trend. By use of specific excitation conditions, the distribution of europium on the amorphous/disordered surface or ordered/crystalline sites can be identified and related to the phase content of zirconia. The role of zirconia host as a sensitizer for the europium PL is also discussed in both tetragonal and monoclinic phases.


Assuntos
Zircônio/química , Európio/química , Medições Luminescentes , Nanotecnologia , Análise Espectral Raman , Temperatura
20.
iScience ; 25(5): 104252, 2022 May 20.
Artigo em Inglês | MEDLINE | ID: mdl-35521526

RESUMO

A catalyst based on first-row Fe and Co with a record of 51% selectivity to C2-C4 hydrocarbons at 36% CO2 conversion is disclosed. The factors responsible for the C2+ selectivity are a narrow Co-Fe particle size distribution of about 10 nm and embedment in N-doped graphitic matrix. These hydrogenation catalysts convert CO2 into C2-C4 hydrocarbons, including ethane, propane, n-butane, ethylene and propylene together with methane, CO. Selectivity varies depending on the catalyst, CO2 conversion, and the operation conditions. Operating with an H2/CO2 ratio of 4 at 300°C and pressure on 5 bar, a remarkable combined 30% of ethylene and propylene at 34% CO2 conversion was achieved. The present results open the way to develop an economically attractive process for CO2 reduction leading to products of higher added value and longer life cycles with a substantial selectivity.

SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa