Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
J Nanosci Nanotechnol ; 12(12): 8935-9, 2012 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-23447941

RESUMO

An aqueous colloid dispersion of gold nanoparticles (AuNPs) was prepared by reduction of gold(III) chloride and its interaction with three local anesthetics (procaine, dibucaine or tetracaine) was investigated. Optical spectra reveal the modifications in the absorption band of nanoparticles related to their self assembly mediated by anesthetic molecules and depending on the progress in time of the aggregation process. TEM images show the features of the self assemblies formed by the association of gold nanoparticles in presence of anesthetics, and reveal marked differences in the behavior of the AuNPs against the three anesthetics. The main effect of various anesthetics can be described in terms of electrostatic forces between the negatively charged metal nanoparticles and anesthetic molecules, existing in their cationic form at the working pH. Then, the anesthetics functionalized nanoparticles trigger specific interactions to form different self assemblies through a selective combination of hydrophobic and hydrogen bonding interactions between the coated nanoparticles and anesthetics molecular species.


Assuntos
Anestésicos Locais/química , Dibucaína/química , Ouro/química , Nanopartículas Metálicas , Procaína/química , Tetracaína/química , Microscopia Eletrônica de Transmissão , Eletricidade Estática
2.
Clujul Med ; 88(1): 15-22, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-26528042

RESUMO

Collagen mineralization (CM) is a challenging process that has received a lot of attention in the past years. Among the reasons for this interest, the key role is the importance of collagen and hydroxyapatite in natural bone, as major constituents. Different protocols of mineralization have been developed, specially using simulated body fluid (SBF) and many methods have been used to characterize the systems obtained, starting with methods of determining the mineral content (XRD, FTIR, Raman, High-Resolution Spectral Ultrasound Imaging), continuing with imaging methods (AFM, TEM, SEM, Fluorescence Microscopy), thermal analysis (DSC and TGA), evaluation of the mechanical and biological properties, including statistical methods and molecular modeling. In spite of the great number of studies regarding collagen mineralization, its mechanism, both in vivo and in vitro, is not completely understood. Some of the methods used in vitro and investigation methods are reviewed here.

3.
Int J Nanomedicine ; 8: 3867-74, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-24143090

RESUMO

Silver nanoparticles (AgNPs) were prepared in aqueous colloid dispersions by the reduction of Ag(+) with glucose in alkaline medium. Tetraethyl orthosilicate and L-asparagine were added as stabilizers of NPs. The AgNPs were characterized, and their interaction with three local anesthetics (procaine, dibucaine, or tetracaine) was investigated. Optical spectra show the characteristic absorption band of AgNPs, due to surface plasmon resonance. Modifications in the position and shape of this band reflect the self-assembly of metal NPs mediated by anesthetic molecules and the progress in time of the aggregation process. Zeta-potential measuring was applied in order to characterize the electrostatic stability of the NPs. The size and shape of the AgNPs, as well as the features of the assemblies formed by their association in the presence of anesthetics, were evidenced by transmission electron microscopy images. Atomic force microscopy images showed the characteristics of the films of AgNPs deposited on glass support. The effect of the anesthetics could be described in terms of electrostatic forces between the negatively charged AgNPs and the anesthetic molecules, existing also in their cationic form at the working pH. But also hydrophobic and hydrogen bonding interactions between the coated nanoparticles and anesthetics molecular species should be considered.


Assuntos
Anestésicos Locais/química , Teste de Materiais/métodos , Nanopartículas Metálicas/química , Nanopartículas Metálicas/ultraestrutura , Prata/química , Adsorção , Sítios de Ligação , Tamanho da Partícula
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa