RESUMO
ADP-ribosylation of proteins is emerging as an important regulatory mechanism. Depending on the family member, ADP-ribosyltransferases either conjugate a single ADP-ribose to a target or generate ADP-ribose chains. Here we characterize Parp9, a mono-ADP-ribosyltransferase reported to be enzymatically inactive. Parp9 undergoes heterodimerization with Dtx3L, a histone E3 ligase involved in DNA damage repair. We show that the Dtx3L/Parp9 heterodimer mediates NAD+-dependent mono-ADP-ribosylation of ubiquitin, exclusively in the context of ubiquitin processing by E1 and E2 enzymes. Dtx3L/Parp9 ADP-ribosylates the carboxyl group of Ub Gly76. Because Gly76 is normally used for Ub conjugation to substrates, ADP-ribosylation of the Ub carboxyl terminus precludes ubiquitylation. Parp9 ADP-ribosylation activity therefore restrains the E3 function of Dtx3L. Mutation of the NAD+ binding site in Parp9 increases the DNA repair activity of the heterodimer. Moreover, poly(ADP-ribose) binding to the Parp9 macrodomains increases E3 activity. Dtx3L heterodimerization with Parp9 enables NAD+ and poly(ADP-ribose) regulation of E3 activity.
Assuntos
Adenosina Difosfato Ribose/metabolismo , Proteínas de Neoplasias/metabolismo , Neoplasias/enzimologia , Poli(ADP-Ribose) Polimerases/metabolismo , Ubiquitina-Proteína Ligases/metabolismo , Ubiquitina/metabolismo , Linhagem Celular Tumoral , Reparo do DNA , Células HEK293 , Humanos , Mutação , NAD/metabolismo , Proteínas de Neoplasias/genética , Neoplasias/genética , Neoplasias/patologia , Poli(ADP-Ribose) Polimerases/genética , Ligação Proteica , Domínios e Motivos de Interação entre Proteínas , Interferência de RNA , Fatores de Tempo , Transfecção , Ubiquitina-Proteína Ligases/genética , UbiquitinaçãoRESUMO
Ubiquitination and ADP-ribosylation are post-translational modifications that play major roles in pathways including the DNA damage response and viral infection. The enzymes responsible for these modifications are therefore potential targets for therapeutic intervention. DTX3L is an E3 Ubiquitin ligase that forms a heterodimer with PARP9. In addition to its ubiquitin ligase activity, DTX3L-PARP9 also acts as an ADP-ribosyl transferase for Gly76 on the C-terminus of ubiquitin. NAD+-dependent ADP-ribosylation of ubiquitin by DTX3L-PARP9 prevents ubiquitin from conjugating to protein substrates. To gain insight into how DTX3L-PARP9 generates these post-translational modifications, we produced recombinant forms of DTX3L and PARP9 and studied their physical interactions. We show the DTX3L D3 domain (230-510) mediates the interaction with PARP9 with nanomolar affinity and an apparent 1 : 1 stoichiometry. We also show that DTX3L and PARP9 assemble into a higher molecular weight oligomer, and that this is mediated by the DTX3L N-terminal region (1-200). Lastly, we show that ADP-ribosylation of ubiquitin at Gly76 is reversible in vitro by several Macrodomain-type hydrolases. Our study provides a framework to understand how DTX3L-PARP9 mediates ADP-ribosylation and ubiquitination through both intra- and inter-subunit interactions.
Assuntos
Complexos Multienzimáticos/química , Complexos Multienzimáticos/metabolismo , Proteínas de Neoplasias/química , Proteínas de Neoplasias/metabolismo , Poli(ADP-Ribose) Polimerases/química , Poli(ADP-Ribose) Polimerases/metabolismo , Multimerização Proteica/genética , Ubiquitina-Proteína Ligases/química , Ubiquitina-Proteína Ligases/metabolismo , ADP-Ribosilação/genética , Adenosina Difosfato Ribose/metabolismo , Animais , Escherichia coli/genética , Escherichia coli/metabolismo , Humanos , Proteínas de Neoplasias/genética , Poli(ADP-Ribose) Polimerases/genética , Domínios e Motivos de Interação entre Proteínas , Proteínas Recombinantes/química , Proteínas Recombinantes/metabolismo , Células Sf9 , Spodoptera , Transfecção , Ubiquitina/metabolismo , Ubiquitina-Proteína Ligases/genética , Ubiquitinação/genéticaRESUMO
BACKGROUND: The lymph node metastasis-derived LNCaP, the bone metastasis-derived PC3 (skull), and VCaP (vertebral) cell lines are widely used as preclinical models of human prostate cancer (CaP) and have been described in more than 19,000 publications. Here, we report on short-read whole-genome sequencing and genomic analyses of LNCaP, VCaP, and PC3 cells stably transduced with WT AR (PC3-AR). METHODS: LNCaP, VCaP, and PC3-AR cell lines were sequenced to an average depth of more than 30-fold using Illumina short-read sequencing. Using various computational methods, we identified and compared the single-nucleotide variants, copy-number profiles, and the structural variants observed in the three cell lines. RESULTS: LNCaP cells are composed of multiple subpopulations, which results in nonintegral copy number states and a high mutational load when the data is analyzed in bulk. All three cell lines contain pathogenic mutations and homozygous deletions in genes involved in DNA mismatch repair, along with deleterious mutations in cell-cycle, Wnt signaling, and other critical cellular processes. PC3-AR cells have a truncating mutation in TP53 and do not express the p53 protein. The VCaP cells contain a homozygous gain-of-function mutation in TP53 (p.R248W) that promotes cancer invasion, metastasis, and progression and has also been observed in prostate adenocarcinomas. In addition, we detect the signatures of chromothripsis of the q arms of chromosome 5 in both PC3-AR and VCaP cells, strengthening the association of TP53 inactivation with chromothripsis reported in other systems. CONCLUSIONS: Our work provides a resource for genetic, genomic, and biological studies employing these commonly-used prostate cancer cell lines.
Assuntos
Linhagem Celular Tumoral/patologia , Metástase Neoplásica/genética , Neoplasias da Próstata/genética , Neoplasias da Próstata/patologia , Sequenciamento Completo do Genoma , Adenocarcinoma/genética , Neoplasias Ósseas/secundário , Ciclo Celular/genética , Reparo de Erro de Pareamento de DNA/genética , Deleção de Genes , Humanos , Metástase Linfática/genética , Masculino , Mutação , Invasividade Neoplásica/genética , Células PC-3 , Polimorfismo de Nucleotídeo Único/genéticaRESUMO
We recently described a signal transduction pathway that contributes to androgen receptor (AR) regulation based on site-specific ADP-ribosylation by PARP7, a mono-ADP-ribosyltransferase implicated in several human cancers. ADP-ribosylated AR is recognized by PARP9/DTX3L, a heterodimeric complex that contains an ADP-ribose reader (PARP9) and a ubiquitin E3 ligase (DTX3L). Here, we have characterized the cellular and biochemical requirements for AR ADP-ribosylation by PARP7. We found that the reaction requires nuclear localization of PARP7 and an agonist-induced conformation of AR. PARP7 contains a Cys3His1-type zinc finger (ZF), which also is critical for AR ADP-ribosylation. The Parp7 ZF is required for efficient nuclear import by a nuclear localization signal encoded in PARP7, but rescue experiments indicate the ZF makes a contribution to AR ADP-ribosylation that is separable from the effect on nuclear transport. ZF mutations do not detectably reduce PARP7 catalytic activity and binding to AR, but they do result in the loss of PARP7 enhancement of AR-dependent transcription of the MYBPC1 gene. Our data reveals critical roles for AR conformation and the PARP7 ZF in AR ADP-ribosylation and AR-dependent transcription.
Assuntos
ADP Ribose Transferases/metabolismo , Androgênios/metabolismo , Núcleo Celular/metabolismo , Proteínas de Transporte de Nucleosídeos/metabolismo , Receptores Androgênicos/metabolismo , ADP Ribose Transferases/química , ADP Ribose Transferases/genética , ADP-Ribosilação , Androgênios/química , Proteínas de Transporte/genética , Proteínas de Transporte/metabolismo , Domínio Catalítico , Expressão Gênica/efeitos dos fármacos , Células HEK293 , Humanos , Mutação , Proteínas de Neoplasias/metabolismo , Proteínas de Transporte de Nucleosídeos/química , Proteínas de Transporte de Nucleosídeos/genética , Poli(ADP-Ribose) Polimerases/metabolismo , Ligação Proteica , Conformação Proteica , Receptores Androgênicos/química , Ubiquitina-Proteína Ligases/metabolismo , Dedos de Zinco/genéticaRESUMO
The sequestration of DNA within the membrane-bound nucleus is a defining characteristic of eukaryotic cells. Replication and transcription are therefore restricted to the nucleus, however, the regulation of these events relies on cytoplasmic processes including protein synthesis and signal transduction pathways. Because a variety of cellular activities depend on nuclear transport, researchers from diverse fields have found it useful to examine the nuclear localization of proteins of interest. Here we present some important technical considerations for studying nuclear and cytoplasmic localization, and provide guidance for quantifying protein levels using fluorescence microscopy and ImageJ software. We include discussion of the use of regions of interest and image segmentation for quantification of protein localization. Nucleocytoplasmic transport is fundamentally important for controlling protein levels and activity in the nucleus or cytoplasm, and quantitative analysis can provide insight into how biological output is achieved.
Assuntos
Transporte Ativo do Núcleo Celular/genética , Núcleo Celular/ultraestrutura , Citoplasma/genética , Microscopia de Fluorescência/métodos , Núcleo Celular/genética , Citoplasma/ultraestrutura , Fluorescência , Humanos , Transporte Proteico/genética , Transdução de Sinais/genéticaRESUMO
The discovery and validation of protein-protein interactions provides a knowledge base that is critical for defining protein networks and how they underpin the biology of the cell. Identification of protein interactions that are highly transient, or sensitive to biochemical disruption, can be very difficult. This challenge has been met by proximity labeling methods which generate reactive species that chemically modify neighboring proteins. The most widely used proximity labeling method is BioID, which features a mutant biotin ligase BirA(Arg118Gly), termed BirA*, fused to a protein of interest. Here, we explore how amino acid substitutions at Arg118 affect the biochemical properties of BirA. We found that relative to wild-type BirA, the Arg118Lys substitution both slightly reduced biotin affinity and increased the release of reactive biotinyl-5'-AMP. BioID using a BirA(Arg118Lys)-Lamin A fusion enabled identification of PCNA as a lamina-proximal protein in HEK293T cells, a finding that was validated by immunofluorescence microscopy. Our data expand on the concept that proximity labeling by BirA fused to proteins of interest can be modulated by amino acid substitutions that affect biotin affinity and the release of biotinyl-5'-AMP.
Assuntos
Biotina/química , Biotinilação/métodos , Carbono-Nitrogênio Ligases/química , Proteínas de Escherichia coli/química , Proteínas Repressoras/química , Biotina/genética , Carbono-Nitrogênio Ligases/genética , Escherichia coli/enzimologia , Proteínas de Escherichia coli/genética , Células HEK293 , Humanos , Mapas de Interação de Proteínas/genética , Proteínas Repressoras/genéticaRESUMO
The Ras-like GTPases RalA and RalB are important drivers of tumour growth and metastasis. Chemicals that block Ral function would be valuable as research tools and for cancer therapeutics. Here we used protein structure analysis and virtual screening to identify drug-like molecules that bind to a site on the GDP-bound form of Ral. The compounds RBC6, RBC8 and RBC10 inhibited the binding of Ral to its effector RALBP1, as well as inhibiting Ral-mediated cell spreading of murine embryonic fibroblasts and anchorage-independent growth of human cancer cell lines. The binding of the RBC8 derivative BQU57 to RalB was confirmed by isothermal titration calorimetry, surface plasmon resonance and (1)H-(15)N transverse relaxation-optimized spectroscopy (TROSY) NMR spectroscopy. RBC8 and BQU57 show selectivity for Ral relative to the GTPases Ras and RhoA and inhibit tumour xenograft growth to a similar extent to the depletion of Ral using RNA interference. Our results show the utility of structure-based discovery for the development of therapeutics for Ral-dependent cancers.
Assuntos
Ensaios de Seleção de Medicamentos Antitumorais , Terapia de Alvo Molecular , Bibliotecas de Moléculas Pequenas/química , Bibliotecas de Moléculas Pequenas/farmacologia , Proteínas ral de Ligação ao GTP/antagonistas & inibidores , Transportadores de Cassetes de Ligação de ATP/metabolismo , Animais , Linhagem Celular Tumoral , Proliferação de Células/efeitos dos fármacos , Simulação por Computador , Feminino , Proteínas Ativadoras de GTPase/metabolismo , Humanos , Camundongos , Modelos Moleculares , Neoplasias/tratamento farmacológico , Neoplasias/enzimologia , Neoplasias/metabolismo , Neoplasias/patologia , Ligação Proteica/efeitos dos fármacos , Transdução de Sinais/efeitos dos fármacos , Especificidade por Substrato , Ensaios Antitumorais Modelo de Xenoenxerto , Proteínas ral de Ligação ao GTP/química , Proteínas ral de Ligação ao GTP/metabolismo , Proteínas ras/metabolismoRESUMO
The KPNA family of mammalian nuclear import receptors are encoded by seven genes that generate isoforms with 42-86% identity. KPNA isoforms have the same protein architecture and share the functional property of nuclear localization signal (NLS) recognition, however, the tissue and developmental expression patterns of these receptors raise the question of whether subtle differences in KPNA isoforms might be important in specific biological contexts. Here, we show that KPNA7, an isoform with expression mostly limited to early development, can bind Importin-ß (Imp-ß) in the absence of NLS cargo. This result contrasts with Imp-ß interactions with other KPNA family members, where affinity is regulated by NLS cargo as part of a cooperative binding mechanism. The Imp-ß binding (IBB) domain, which is highly conserved in all KPNA family members, generally serves to occlude the NLS binding groove and maintain the receptor in an auto-inhibited 'closed' state prior to NLS contact. Cooperative binding of NLS cargo and Imp-ß to KPNA results in an 'open'state. Characterization of KPNA2-KPNA7 chimeric proteins suggests that features of both the IBB domain and the core structure of the receptor contribute to the extent of IBB domain accessibility for Imp-ß binding, which likely reflects an 'open' state. We also provide evidence that KPNA7 maintains an open-state in the nucleus. We speculate that KPNA7 could function within the nucleus by interacting with NLS-containing proteins.
Assuntos
alfa Carioferinas/química , alfa Carioferinas/metabolismo , beta Carioferinas/metabolismo , Sequência de Aminoácidos , Núcleo Celular/genética , Núcleo Celular/metabolismo , Humanos , Sinais de Localização Nuclear , Domínios Proteicos , Isoformas de Proteínas/química , Isoformas de Proteínas/genética , Isoformas de Proteínas/metabolismo , Alinhamento de Sequência , alfa Carioferinas/genética , beta Carioferinas/química , beta Carioferinas/genéticaRESUMO
Developmental epilepsies are age-dependent seizure disorders for which genetic causes have been increasingly identified. Here we report six unrelated individuals with mutations in salt-inducible kinase 1 (SIK1) in a series of 101 persons with early myoclonic encephalopathy, Ohtahara syndrome, and infantile spasms. Individuals with SIK1 mutations had short survival in cases with neonatal epilepsy onset, and an autism plus developmental syndrome after infantile spasms in others. All six mutations occurred outside the kinase domain of SIK1 and each of the mutants displayed autophosphorylation and kinase activity toward HDAC5. Three mutations generated truncated forms of SIK1 that were resistant to degradation and also showed changes in sub-cellular localization compared to wild-type SIK1. We also report the human neuropathologic examination of SIK1-related developmental epilepsy, with normal neuronal morphology and lamination but abnormal SIK1 protein cellular localization. Therefore, these results expand the genetic etiologies of developmental epilepsies by demonstrating SIK1 mutations as a cause of severe developmental epilepsy.
Assuntos
Transtorno Autístico/genética , Proteínas Serina-Treonina Quinases/genética , Espasmos Infantis/genética , Fatores Etários , Transtorno Autístico/patologia , Sequência de Bases , Criança , Primers do DNA/genética , Eletroencefalografia , Histona Desacetilases/genética , Histona Desacetilases/metabolismo , Humanos , Imuno-Histoquímica , Lactente , Recém-Nascido , Imageamento por Ressonância Magnética , Dados de Sequência Molecular , Mutação/genética , Fosforilação , Reação em Cadeia da Polimerase , Espasmos Infantis/patologiaRESUMO
BACKGROUND: The cellular effects of androgen are transduced through the androgen receptor, which controls the expression of genes that regulate biosynthetic processes, cell growth, and metabolism. Androgen signaling also impacts DNA damage signaling through mechanisms involving gene expression and transcription-associated DNA damaging events. Defining the contributions of androgen signaling to DNA repair is important for understanding androgen receptor function, and it also has translational implications. METHODS: We generated RNA-seq data from multiple prostate cancer lines and used bioinformatic analyses to characterize androgen-regulated gene expression. We compared the results from cell lines with gene expression data from prostate cancer xenografts, and patient samples, to query how androgen signaling and prostate cancer progression influences the expression of DNA repair genes. We performed whole genome sequencing to help characterize the status of the DNA repair machinery in widely used prostate cancer lines. Finally, we tested a DNA repair enzyme inhibitor for effects on androgen-dependent transcription. RESULTS: Our data indicates that androgen signaling regulates a subset of DNA repair genes that are largely specific to the respective model system and disease state. We identified deleterious mutations in the DNA repair genes RAD50 and CHEK2. We found that inhibition of the DNA repair enzyme MRE11 with the small molecule mirin inhibits androgen-dependent transcription and growth of prostate cancer cells. CONCLUSIONS: Our data supports the view that crosstalk between androgen signaling and DNA repair occurs at multiple levels, and that DNA repair enzymes in addition to PARPs, could be actionable targets in prostate cancer.
Assuntos
Androgênios/metabolismo , Reparo do DNA/genética , DNA de Neoplasias/genética , Neoplasias da Próstata/genética , Neoplasias da Próstata/metabolismo , Receptores Androgênicos/metabolismo , Animais , Regulação Neoplásica da Expressão Gênica/efeitos dos fármacos , Humanos , Masculino , Células PC-3 , Inibidores de Proteínas Quinases/farmacologia , Transdução de Sinais/efeitos dos fármacos , Transcrição Gênica/efeitos dos fármacosRESUMO
BACKGROUND: Phosphoinositide-3 (PI-3) kinase signaling has a pervasive role in cancer. One of the key effectors of PI-3 kinase signaling is AKT, a kinase that promotes growth and survival in a variety of cancers. Genetically engineered mouse models of prostate cancer have shown that AKT signaling is sufficient to induce prostatic epithelial neoplasia (PIN), but insufficient for progression to adenocarcinoma. This contrasts with the phenotype of mice with prostate-specific deletion of Pten, where excessive PI-3 kinase signaling induces both PIN and locally invasive carcinoma. We reasoned that additional PI-3 kinase effector kinases promote prostate cancer progression via activities that provide biological complementarity to AKT. We focused on the PKN kinase family members, which undergo activation in response to PI-3 kinase signaling, show expression changes in prostate cancer, and contribute to cell motility pathways in cancer cells. METHODS: PKN kinase activity was measured by incorporation of 32 P into protein substrates. Phosphorylation of the turn-motif (TM) in PKN proteins by mTOR was analyzed using the TORC2-specific inhibitor torin and a PKN1 phospho-TM-specific antibody. Amino acid substitutions in the TM of PKN were engineered and assayed for effects on kinase activity. Cell motility-related functions and PKN localization was analyzed by depletion approaches and immunofluorescence microscopy, respectively. The contribution of PKN proteins to prostate tumorigenesis was characterized in several mouse models that express PKN transgenes. The requirement for PKN activity in prostate cancer initiated by loss of phosphatase and tensin homolog deleted on chromosome 10 (Pten), and the potential redundancy between PKN isoforms, was analyzed by prostate-specific deletion of Pkn1, Pkn2, and Pten. RESULTS AND CONCLUSIONS: PKN1 and PKN2 contribute to motility pathways in human prostate cancer cells. PKN1 and PKN2 kinase activity is regulated by TORC2-dependent phosphorylation of the TM, which together with published data indicates that PKN proteins receive multiple PI-3 kinase-dependent inputs. Transgenic expression of active AKT and PKN1 is not sufficient for progression beyond PIN. Moreover, Pkn1 is not required for tumorigenesis initiated by loss of Pten. Triple knockout of Pten, Pkn1, and Pkn2 in mouse prostate results in squamous cell carcinoma, an uncommon but therapy-resistant form of prostate cancer.
Assuntos
Neoplasias da Próstata/enzimologia , Neoplasias da Próstata/patologia , Proteína Quinase C/metabolismo , Serina-Treonina Quinases TOR/metabolismo , Animais , Diferenciação Celular/fisiologia , Progressão da Doença , Células HEK293 , Humanos , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , PTEN Fosfo-Hidrolase/metabolismo , Neoplasias da Próstata/genética , Proteína Quinase C/genética , Serina-Treonina Quinases TOR/genéticaRESUMO
Tpr is a prominent architectural component of the nuclear pore complex that forms the basket-like structure on the nucleoplasmic side of the pore. Tpr, which stands for translocated promoter region, was originally described in the context of oncogenic fusions with the receptor tyrosine kinases Met, TRK, and Raf. Tpr has been since implicated in a variety of nuclear functions, including nuclear transport, chromatin organization, regulation of transcription, and mitosis. More recently, Tpr function has been linked to events including p53 signaling and premature aging in Hutchinson-Gilford Progeria Syndrome (HGPS). Here we provide an overview of the various processes that involve Tpr, and discuss how the levels and localization of a single protein can affect diverse pathways in the cell.
Assuntos
Envelhecimento/fisiologia , Complexo de Proteínas Formadoras de Poros Nucleares/fisiologia , Poro Nuclear/fisiologia , Proteínas Proto-Oncogênicas/fisiologia , Humanos , Proteínas Oncogênicas/fisiologia , Fuso AcromáticoRESUMO
Deltex proteins are a family of E3 ubiquitin ligases that encode C-terminal RING and DTC domains that mediate interactions with E2 ubiquitin-conjugating enzymes and recognize ubiquitination substrates. DTX3L is unique among the Deltex proteins based on its N-terminal domain architecture. The N-terminal D1 and D2 domains of DTX3L mediate homo-oligomerization, and the D3 domain interacts with PARP9, a protein that contains tandem macrodomains with ADP-ribose reader function. While DTX3L and PARP9 are known to heterodimerize, and assemble into a high molecular weight oligomeric complex, the nature of the oligomeric structure, including whether this contributes to the ADP-ribose reader function is unknown. Here, we report a crystal structure of the DTX3L N-terminal D2 domain and show that it forms a tetramer with, conveniently, D2 symmetry. We identified two interfaces in the structure: a major, conserved interface with a surface of 973 Å2 and a smaller one of 415 Å2. Using native mass spectrometry, we observed molecular species that correspond to monomers, dimers and tetramers of the D2 domain. Reconstitution of DTX3L knockout cells with a D1-D2 deletion mutant showed the domain is dispensable for DTX3L-PARP9 heterodimer formation, but necessary to assemble an oligomeric complex with efficient reader function for ADP-ribosylated androgen receptor. Our results suggest that homo-oligomerization of DTX3L is important for the DTX3L-PARP9 complex to read mono-ADP-ribosylation on a ligand-regulated transcription factor.
Assuntos
Leitura , Receptores Androgênicos , Ubiquitina-Proteína Ligases/metabolismo , Ubiquitinação , Adenosina Difosfato Ribose/metabolismoRESUMO
Androgen signaling in prostate cancer cells involves multisite cysteine ADP-ribosylation of the androgen receptor (AR) by PARP7. The AR modification is read by ADP-ribosyl binding macrodomains in PARP9, but the reason that multiple cysteines are modified is unknown. Here, we use synthetic peptides to show that dual ADP-ribosylation of closely spaced cysteines mediates recognition by the DTX3L/PARP9 complex. Mono and dual ADP-ribosylated cysteine peptides were prepared using a novel solid-phase synthetic strategy utilizing a key, Boc-protected, ribofuranosylcysteine building block. This synthetic strategy allowed us to synthesize fluorescently labeled peptides containing a dual ADP-ribosylation motif. It was found that the DTX3L/PARP9 complex recognizes the dual ADP-ribosylated AR peptide (Kd = 80.5 nM) with significantly higher affinity than peptides with a single ADP-ribose. Moreover, oligomerization of the DTX3L/PARP9 complex proved crucial for ADP-ribosyl-peptide interaction since a deletion mutant of the complex that prevents its oligomer formation dramatically reduced peptide binding. Our data show that features of the substrate modification and the reader contribute to the efficiency of the interaction and imply that multivalent interactions are important for AR-DTX3L/PARP9 assembly.
Assuntos
Cisteína , Neoplasias da Próstata , Masculino , Humanos , Cisteína/metabolismo , Receptores Androgênicos/metabolismo , ADP-Ribosilação , Peptídeos/química , Adenosina Difosfato Ribose/metabolismo , Ubiquitina-Proteína Ligases/metabolismo , Proteínas de Neoplasias/metabolismo , Poli(ADP-Ribose) Polimerases/metabolismoRESUMO
Deltex proteins are a family of E3 ubiquitin ligases that encode C-terminal RING and DTC domains that mediate interactions with E2 ubiquitin-conjugating enzymes and recognise ubiquitination substrates. DTX3L is unique among the Deltex proteins based on its N-terminal domain architecture. The N-terminal D1 and D2 domains of DTX3L mediate homo-oligomerisation, and the D3 domain interacts with PARP9, a protein that contains tandem macrodomains with ADP-ribose reader function. While DTX3L and PARP9 are known to heterodimerize, they assemble into a high molecular weight oligomeric complex, but the nature of the oligomeric structure, including whether this contributes to the ADP-ribose reader function is unknown. Here, we report a crystal structure of the DTX3L N-terminal D2 domain and show that it forms a tetramer with, conveniently, D2 symmetry. We identified two interfaces in the structure: a major, conserved interface with a surface of 973 Å2 and a smaller one of 415 Å2. Using native mass spectrometry, we observed molecular species that correspond to monomers, dimers and tetramers of the D2 domain. Reconstitution of DTX3L knockout cells with a D1-D2 deletion mutant showed the domain is dispensable for DTX3L-PARP9 heterodimer formation, but necessary to assemble an oligomeric complex with efficient reader function for ADP-ribosylated androgen receptor. Our results suggest that homo-oligomerisation of DTX3L is important for mono-ADP-ribosylation reading by the DTX3L-PARP9 complex and to a ligand-regulated transcription factor.
RESUMO
The ADP-ribosyltransferase PARP7 modulates protein function by conjugating ADP-ribose to the side chains of acceptor amino acids. PARP7 has been shown to affect gene expression in prostate cancer cells and certain other cell types by mechanisms that include transcription factor ADP-ribosylation. Here, we use a recently developed catalytic inhibitor to PARP7, RBN2397, to study the effects of PARP7 inhibition in androgen receptor (AR)-positive and AR-negative prostate cancer cells. We find that RBN2397 has nanomolar potency for inhibiting androgen-induced ADP-ribosylation of the AR. RBN2397 inhibits the growth of prostate cancer cells in culture when cells are treated with ligands that activate the AR, or the aryl hydrocarbon receptor, and induce PARP7 expression. We show that the growth-inhibitory effects of RBN2397 are distinct from its enhancement of IFN signaling recently shown to promote tumor immunogenicity. RBN2397 treatment also induces trapping of PARP7 in a detergent-resistant fraction within the nucleus, which is reminiscent of how inhibitors such as talazoparib affect PARP1 compartmentalization. Because PARP7 is expressed in AR-negative metastatic tumors and RBN2397 can affect cancer cells through multiple mechanisms, PARP7 may be an actionable target in advanced prostate cancer. Significance: RBN2397 is a potent and selective inhibitor of PARP7 that reduces the growth of prostate cancer cells, including a model for treatment-emergent neuroendocrine prostate cancer. RBN2397 induces PARP7 trapping on chromatin, suggesting its mechanism of action might be similar to clinically used PARP1 inhibitors.
Assuntos
Neoplasias da Próstata , Receptores Androgênicos , Masculino , Humanos , Receptores Androgênicos/genética , Neoplasias da Próstata/tratamento farmacológico , Próstata/metabolismo , ADP Ribose Transferases/genética , AndrogêniosRESUMO
ADP-ribosylation, a modification of proteins, nucleic acids, and metabolites, confers broad functions, including roles in stress responses elicited, for example, by DNA damage and viral infection and is involved in intra- and extracellular signaling, chromatin and transcriptional regulation, protein biosynthesis, and cell death. ADP-ribosylation is catalyzed by ADP-ribosyltransferases (ARTs), which transfer ADP-ribose from NAD+ onto substrates. The modification, which occurs as mono- or poly-ADP-ribosylation, is reversible due to the action of different ADP-ribosylhydrolases. Importantly, inhibitors of ARTs are approved or are being developed for clinical use. Moreover, ADP-ribosylhydrolases are being assessed as therapeutic targets, foremost as antiviral drugs and for oncological indications. Due to the development of novel reagents and major technological advances that allow the study of ADP-ribosylation in unprecedented detail, an increasing number of cellular processes and pathways are being identified that are regulated by ADP-ribosylation. In addition, characterization of biochemical and structural aspects of the ARTs and their catalytic activities have expanded our understanding of this protein family. This increased knowledge requires that a common nomenclature be used to describe the relevant enzymes. Therefore, in this viewpoint, we propose an updated and broadly supported nomenclature for mammalian ARTs that will facilitate future discussions when addressing the biochemistry and biology of ADP-ribosylation. This is combined with a brief description of the main functions of mammalian ARTs to illustrate the increasing diversity of mono- and poly-ADP-ribose mediated cellular processes.
Assuntos
ADP Ribose Transferases , Biossíntese de Proteínas , ADP Ribose Transferases/genética , Adenosina Difosfato Ribose , Difosfato de AdenosinaRESUMO
Poly-ADP-ribose polymerases (PARPs) are enzymes that catalyze ADP-ribosylation and play critical roles in normal and disease settings. The PARP family member, PARP7, is a mono-ADP-ribosyltransferase that has been suggested to play a tumor suppressive role in breast, ovarian, and colorectal cancer. Here, we have investigated how androgen signaling regulates PARP7 homeostasis in prostate cancer cells, where PARP7 is a direct target gene of AR. We found that the PARP7 protein is extremely short-lived, with a half-life of 4.5 min. We show that in addition to its transcriptional regulation by AR, PARP7 is subject to androgen-dependent post-transcriptional regulation that increases its half-life to 25.6 min. This contrasts with PARP1, PARP2, PARP9, and PARP14, which do not display rapid turnover and are not regulated by androgen signaling. Androgen- and AR-dependent stabilization of PARP7 leads to accumulation in the nucleus, which we suggest is a major site of action. Mutations in the catalytic domain, the Cys3His1 zinc finger, and WWE (tryptophan-tryptophan-glutamate) domains in PARP7 each reduce the degradation rate of PARP7, suggesting the overall structure of the protein is tuned for its rapid turnover. Our finding that PARP7 is regulated by AR signaling both transcriptionally and post-transcriptionally in prostate cancer cells suggests the dosage of PARP7 protein is subject to tight regulation.
Assuntos
ADP Ribose Transferases/metabolismo , Androgênios/metabolismo , Regulação da Expressão Gênica , Proteínas de Transporte de Nucleosídeos/metabolismo , Neoplasias da Próstata/enzimologia , ADP Ribose Transferases/química , Animais , Linhagem Celular Tumoral , Núcleo Celular/metabolismo , Humanos , Masculino , Camundongos , Proteínas de Transporte de Nucleosídeos/genética , Neoplasias da Próstata/patologia , Domínios Proteicos , Estabilidade Proteica , Receptores Androgênicos/metabolismo , Transdução de Sinais , Transcrição GênicaRESUMO
Androgen signaling through the androgen receptor (AR) directs gene expression in both normal and prostate cancer cells. Androgen regulates multiple aspects of the AR life cycle, including its localization and post-translational modification, but understanding how modifications are read and integrated with AR activity has been difficult. Here, we show that ADP-ribosylation regulates AR through a nuclear pathway mediated by Parp7. We show that Parp7 mono-ADP-ribosylates agonist-bound AR, and that ADP-ribosyl-cysteines within the N-terminal domain mediate recruitment of the E3 ligase Dtx3L/Parp9. Molecular recognition of ADP-ribosyl-cysteine is provided by tandem macrodomains in Parp9, and Dtx3L/Parp9 modulates expression of a subset of AR-regulated genes. Parp7, ADP-ribosylation of AR, and AR-Dtx3L/Parp9 complex assembly are inhibited by Olaparib, a compound used clinically to inhibit poly-ADP-ribosyltransferases Parp1/2. Our study reveals the components of an androgen signaling axis that uses a writer and reader of ADP-ribosylation to regulate protein-protein interactions and AR activity.