RESUMO
An overlooked effect of ecosystem eutrophication is the potential to alter disease dynamics in primary producers, inducing disease-mediated feedbacks that alter net primary productivity and elemental recycling. Models in disease ecology rarely track organisms past death, yet death from infection can alter important ecosystem processes including elemental recycling rates and nutrient supply to living hosts. In contrast, models in ecosystem ecology rarely track disease dynamics, yet elemental nutrient pools (e.g. nitrogen, phosphorus) can regulate important disease processes including pathogen reproduction and transmission. Thus, both disease and ecosystem ecology stand to grow as fields by exploring questions that arise at their intersection. However, we currently lack a framework explicitly linking these disciplines. We developed a stoichiometric model using elemental currencies to track primary producer biomass (carbon) in vegetation and soil pools, and to track prevalence and the basic reproduction number (R0 ) of a directly transmitted pathogen. This model, parameterised for a deciduous forest, demonstrates that anthropogenic nutrient supply can interact with disease to qualitatively alter both ecosystem and disease dynamics. Using this element-focused approach, we identify knowledge gaps and generate predictions about the impact of anthropogenic nutrient supply rates on infectious disease and feedbacks to ecosystem carbon and nutrient cycling.
Assuntos
Doenças Transmissíveis , Ecossistema , Carbono , Retroalimentação , Humanos , Nitrogênio , FósforoRESUMO
Despite the ubiquity of pathogens in ecological systems, their roles in influencing ecosystem services are often overlooked. Pathogens that infect primary producers (i.e., plants, algae, cyanobacteria) can have particularly strong effects because autotrophs are responsible for a wide range of provisioning, regulating, and cultural services. We review the roles of pathogens in mediating ecosystem services provided by autotrophs and outline scenarios in which infection may lead to unexpected outcomes in response to global change. Our synthesis highlights a deficit of information on this topic, and we outline a vision for future research that includes integrative theory and cross-system empirical studies. Ultimately, knowledge about the mediating roles of pathogens on ecosystem services should inform environmental policy and practice.