RESUMO
The high-contrast-grating waveplates utilizing high contrast between silicon and air refractive indexes were developed in order to perform as a quarter wave and a half wave plate in the selected THz frequency range. The waveplates possessed anti-reflective properties due to the specific inclination of the walls both in parallel and in perpendicular direction to grating axis, efficiently suppressing the reflection losses caused by air-dielectric interface for both transverse magnetic and transverse electric polarizations. Moreover, significant reduction of the transmittance gap was achieved between both polarizations while mitigating overall Fabry-Perot effect. Validation of the concepts was carried out by measuring transmission amplitude and phase spectra of the fabricated samples in a broadband of THz time-domain spectroscopy and vector-network-analysis systems considering also some real applications.
RESUMO
Fifty percents absorption by thin film, with thickness is much smaller than the skin depth and optical thickness much smaller than the wavelength, is a well-known concept of classical electrodynamics. This is a valuable feature that has been numerously widely explored for metal films, while chemically inert nanomembranes are a real fabrication challenge. Here we report the 20 nm thin pyrolyzed carbon film (PyC) placed on 300 nm thick silicon nitride (Si3N4) membrane demonstrating an efficient broadband absorption in the terahertz and near infrared ranges. While the bare Si3N4membrane is completely transparent in the THz range, the 20 nm thick PyC layer increases the absorption of the PyC coated Si3N4membrane to 40%. The reflection and transmission spectra in the near infrared region reveal that the PyC film absorption persists to a level of at least 10% of the incident power. Such a broadband absorption of the PyC film opens new pathways toward broadband bolometric radiation detectors.
RESUMO
To fabricate graphene-based high-frequency electronic and optoelectronic devices, there is a high demand for scalable low-contaminated graphene with high mobility. Graphene synthesized via chemical vapor deposition (CVD) on copper foil appears promising for this purpose, but residues from the polymethyl methacrylate (PMMA) layer, used for the wet transfer of CVD graphene, drastically affect the electrical properties of graphene. Here, we demonstrate a scalable and green PMMA removal technique that yields high-mobility graphene on the most common technologically relevant silicon (Si) substrate. As the first step, the polarity of the PMMA was modified under deep-UV irradiation at λ = 254 nm, due to the formation of ketones and aldehydes of higher polarity, which simplifies hydrogen bonding in the step of its dissolution. Modification of PMMA polarity was confirmed by UV and FTIR spectrometry and contact angle measurements. Consecutive dissolution of DUV-exposed PMMA in an environmentally friendly, binary, high-polarity mixture of isopropyl alcohol/water (more commonly alcohol/water) resulted in the rapid and complete removal of DUV-exposed polymers without the degradation of graphene properties, as low-energy exposure does not form free radicals, and thus the released graphene remained intact. The high quality of graphene after PMMA removal was confirmed by SEM, AFM, Raman spectrometry, and by contact and non-contact electrical conductivity measurements. The removal of PMMA from graphene was also performed via other common methods for comparison. The charge carrier mobility in graphene films was found to be up to 6900 cm2/(V·s), demonstrating a high potential of the proposed PMMA removal method in the scalable fabrication of high-performance electronic devices based on CVD graphene.