Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 41
Filtrar
1.
J Transl Med ; 22(1): 375, 2024 Apr 20.
Artigo em Inglês | MEDLINE | ID: mdl-38643121

RESUMO

Maladaptive cardiac hypertrophy contributes to the development of heart failure (HF). The oxidoreductase Selenoprotein T (SELENOT) emerged as a key regulator during rat cardiogenesis and acute cardiac protection. However, its action in chronic settings of cardiac dysfunction is not understood. Here, we investigated the role of SELENOT in the pathophysiology of HF: (i) by designing a small peptide (PSELT), recapitulating SELENOT activity via the redox site, and assessed its beneficial action in a preclinical model of HF [aged spontaneously hypertensive heart failure (SHHF) rats] and against isoproterenol (ISO)-induced hypertrophy in rat ventricular H9c2 and adult human AC16 cardiomyocytes; (ii) by evaluating the SELENOT intra-cardiomyocyte production and secretion under hypertrophied stimulation. Results showed that PSELT attenuated systemic inflammation, lipopolysaccharide (LPS)-induced macrophage M1 polarization, myocardial injury, and the severe ultrastructural alterations, while counteracting key mediators of cardiac fibrosis, aging, and DNA damage and restoring desmin downregulation and SELENOT upregulation in the failing hearts. In the hemodynamic assessment, PSELT improved the contractile impairment at baseline and following ischemia/reperfusion injury, and reduced infarct size in normal and failing hearts. At cellular level, PSELT counteracted ISO-mediated hypertrophy and ultrastructural alterations through its redox motif, while mitigating ISO-triggered SELENOT intracellular production and secretion, a phenomenon that presumably reflects the extent of cell damage. Altogether, these results indicate that SELENOT could represent a novel sensor of hypertrophied cardiomyocytes and a potential PSELT-based new therapeutic approach in myocardial hypertrophy and HF.


Assuntos
Insuficiência Cardíaca , Selenoproteínas , Tiorredoxina Dissulfeto Redutase , Adulto , Idoso , Animais , Humanos , Ratos , Insuficiência Cardíaca/metabolismo , Hipertrofia/metabolismo , Isoproterenol/metabolismo , Isoproterenol/farmacologia , Miócitos Cardíacos/metabolismo , Oxirredução , Selenoproteínas/metabolismo , Tiorredoxina Dissulfeto Redutase/metabolismo
2.
Pharmacol Res ; 168: 105581, 2021 06.
Artigo em Inglês | MEDLINE | ID: mdl-33781873

RESUMO

In-depth characterization of heart-brain communication in critically ill patients with severe acute respiratory failure is attracting significant interest in the COronaVIrus Disease 19 (COVID-19) pandemic era during intensive care unit (ICU) stay and after ICU or hospital discharge. Emerging research has provided new insights into pathogenic role of the deregulation of the heart-brain axis (HBA), a bidirectional flow of information, in leading to severe multiorgan disease syndrome (MODS) in patients with confirmed infection with severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). Noteworthy, HBA dysfunction may worsen the outcome of the COVID-19 patients. In this review, we discuss the critical role HBA plays in both promoting and limiting MODS in COVID-19. We also highlight the role of HBA as new target for novel therapeutic strategies in COVID-19 in order to open new translational frontiers of care. This is a translational perspective from the Italian Society of Cardiovascular Researches.


Assuntos
Encefalopatias/terapia , Encéfalo/efeitos dos fármacos , COVID-19/terapia , Cardiopatias/terapia , Coração/efeitos dos fármacos , Corticosteroides/administração & dosagem , Anti-Inflamatórios/administração & dosagem , Antivirais/administração & dosagem , Encéfalo/imunologia , Encéfalo/metabolismo , Encefalopatias/imunologia , Encefalopatias/metabolismo , COVID-19/imunologia , COVID-19/metabolismo , Cuidados Críticos/métodos , Estado Terminal/terapia , Suplementos Nutricionais , Alimento Funcional , Cardiopatias/imunologia , Cardiopatias/metabolismo , Humanos , Mediadores da Inflamação/antagonistas & inibidores , Mediadores da Inflamação/imunologia , Mediadores da Inflamação/metabolismo , Microvasos/efeitos dos fármacos , Microvasos/imunologia , Microvasos/metabolismo , Insuficiência de Múltiplos Órgãos/imunologia , Insuficiência de Múltiplos Órgãos/metabolismo , Insuficiência de Múltiplos Órgãos/terapia , SARS-CoV-2/efeitos dos fármacos , SARS-CoV-2/imunologia , SARS-CoV-2/metabolismo
3.
FASEB J ; 33(6): 7734-7747, 2019 06.
Artigo em Inglês | MEDLINE | ID: mdl-30973759

RESUMO

The clinical use of doxorubicin (Doxo), a widely used anticancer chemotherapeutic drug, is limited by dose-dependent cardiotoxicity. We have investigated whether chromogranin A (CgA), a cardioregulatory protein released in the blood by the neuroendocrine system and by the heart itself, may contribute to regulation of the cardiotoxic and antitumor activities of Doxo. The effects of a physiologic dose of full-length recombinant CgA on Doxo-induced cardiotoxicity and antitumor activity were investigated in rats using in vivo and ex vivo models and in murine models of melanoma, fibrosarcoma, lymphoma, and lung cancer, respectively. The effect of Doxo on circulating levels of CgA was also investigated. In vivo and ex vivo mechanistic studies showed that CgA can prevent Doxo-induced heart inflammation, oxidative stress, apoptosis, fibrosis, and ischemic injury. On the other hand, CgA did not impair the anticancer activity of Doxo in all the murine models investigated. Furthermore, we observed that Doxo can reduce the intracardiac expression and release of CgA in the blood (i.e., an important cardioprotective agent). These findings suggest that administration of low-dose CgA to patients with low levels of endogenous CgA might represent a novel approach to prevent Doxo-induced adverse events without impairing antitumor effects.-Rocca, C., Scavello, F., Colombo, B., Gasparri, A. M., Dallatomasina, A., Granieri, M. C., Amelio, D., Pasqua, T., Cerra, M. C., Tota, B., Corti, A., Angelone, T. Physiological levels of chromogranin A prevent doxorubicin-induced cardiotoxicity without impairing its anticancer activity.


Assuntos
Antibióticos Antineoplásicos/efeitos adversos , Cromogranina A/metabolismo , Doxorrubicina/efeitos adversos , Coração/efeitos dos fármacos , Animais , Apoptose/efeitos dos fármacos , Feminino , Masculino , Camundongos , Camundongos Endogâmicos BALB C , Camundongos Endogâmicos C57BL , Miócitos Cardíacos/efeitos dos fármacos , Ratos , Ratos Wistar
4.
Pharmacol Res ; 156: 104766, 2020 06.
Artigo em Inglês | MEDLINE | ID: mdl-32201244

RESUMO

Since the discovery of Nesfatin-1 in 2006, intensive research was finalized to further and deeper investigate the precise physiological functions of the peptide at both central and peripheral levels, rapidly enriching the knowledge regarding this intriguing molecule. Nesfatin-1 is a hypothalamic peptide generated via the post-translational processing of its precursor Nucleobindin 2, a protein supposed to play a role in many biological processes thanks to its ability to bind calcium and to interact with different intracellular proteins. Nesfatin-1 is mainly known for its anorexic properties, but it also controls water intake and glucose homeostasis. Recent experimental evidences describe the peptide as a possible direct/indirect orchestrator of central and peripheral cardiovascular control. A specific Nesfatin-1 receptor still remains to be identified although numerous studies suggest that the peptide activates extra- and intracellular regulatory pathways by involving several putative binding sites. The present paper was designed to systematically review the latest findings about Nesfatin-1, focusing on its cardiovascular regulatory properties under normal and physiopathological conditions. The hope is to provide the conceptual basis to consider Nesfatin-1 not only as a pleiotropic neuroendocrine molecule, but also as a homeostatic modulator of the cardiovascular function and with a crucial role in cardiovascular diseases.


Assuntos
Doenças Cardiovasculares/metabolismo , Sistema Cardiovascular/metabolismo , Nucleobindinas/metabolismo , Animais , Biomarcadores/metabolismo , Doenças Cardiovasculares/fisiopatologia , Sistema Cardiovascular/fisiopatologia , Hemodinâmica , Humanos , Prognóstico , Transdução de Sinais , Pesquisa Translacional Biomédica
5.
Cell Mol Life Sci ; 76(20): 3969-3985, 2019 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-31218451

RESUMO

Cardiovascular diseases represent one of the most important health problems of developed countries. One of the main actors involved in the onset and development of cardiovascular diseases is the increased production of reactive oxygen species that, through lipid peroxidation, protein oxidation and DNA damage, induce oxidative stress and cell death. Basic and clinical research are ongoing to better understand the endogenous antioxidant mechanisms that counteract oxidative stress, which may allow to identify a possible therapeutic targeting/application in the field of stress-dependent cardiovascular pathologies. In this context, increasing attention is paid to the glutathione/glutathione-peroxidase and to the thioredoxin/thioredoxin-reductase systems, among the most potent endogenous antioxidative systems. These key enzymes, belonging to the selenoprotein family, have a well-established function in the regulation of the oxidative cell balance. The aim of the present review was to highlight the role of selenoproteins in cardiovascular diseases, introducing the emerging cardioprotective role of endoplasmic reticulum-resident members and in particular one of them, namely selenoprotein T or SELENOT. Accumulating evidence indicates that the dysfunction of different selenoproteins is involved in the susceptibility to oxidative stress and its associated cardiovascular alterations, such as congestive heart failure, coronary diseases, impaired cardiac structure and function. Some of them are under investigation as useful pathological biomarkers. In addition, SELENOT exhibited intriguing cardioprotective effects by reducing the cardiac ischemic damage, in terms of infarct size and performance. In conclusion, selenoproteins could represent valuable targets to treat and diagnose cardiovascular diseases secondary to oxidative stress, opening a new avenue in the field of related therapeutic strategies.


Assuntos
Cardiotônicos/uso terapêutico , Doenças Cardiovasculares/genética , Estresse do Retículo Endoplasmático/efeitos dos fármacos , Peptídeos/uso terapêutico , Selenocisteína/metabolismo , Selenoproteínas/genética , Animais , Antioxidantes/metabolismo , Doenças Cardiovasculares/metabolismo , Doenças Cardiovasculares/patologia , Doenças Cardiovasculares/terapia , Regulação da Expressão Gênica , Glutationa Peroxidase/metabolismo , Humanos , Terapia de Alvo Molecular/métodos , Miócitos Cardíacos/efeitos dos fármacos , Miócitos Cardíacos/metabolismo , Miócitos Cardíacos/patologia , Estresse Oxidativo/efeitos dos fármacos , Isoformas de Proteínas/agonistas , Isoformas de Proteínas/genética , Isoformas de Proteínas/metabolismo , Espécies Reativas de Oxigênio/antagonistas & inibidores , Espécies Reativas de Oxigênio/metabolismo , Selenoproteínas/agonistas , Selenoproteínas/metabolismo , Tiorredoxina Dissulfeto Redutase/metabolismo
6.
Cell Tissue Res ; 376(1): 51-70, 2019 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-30467710

RESUMO

We have previously shown that the chromogranin A (CgA)-derived peptide catestatin (CST: hCgA352-372) inhibits nicotine-induced secretion of catecholamines from the adrenal medulla and chromaffin cells. In the present study, we seek to determine whether CST regulates dense core (DC) vesicle (DCV) quanta (catecholamine and chromogranin/secretogranin proteins) during acute (0.5-h treatment) or chronic (24-h treatment) cholinergic (nicotine) or peptidergic (PACAP, pituitary adenylyl cyclase activating polypeptide) stimulation of PC12 cells. In acute experiments, we found that both nicotine (60 µM) and PACAP (0.1 µM) decreased intracellular norepinephrine (NE) content and increased 3H-NE secretion, with both effects markedly inhibited by co-treatment with CST (2 µM). In chronic experiments, we found that nicotine and PACAP both reduced DCV and DC diameters and that this effect was likewise prevented by CST. Nicotine or CST alone increased expression of CgA protein and together elicited an additional increase in CgA protein, implying that nicotine and CST utilize separate signaling pathways to activate CgA expression. In contrast, PACAP increased expression of CgB and SgII proteins, with a further potentiation by CST. CST augmented the expression of tyrosine hydroxylase (TH) but did not increase intracellular NE levels, presumably due to its inability to cause post-translational activation of TH through serine phosphorylation. Co-treatment of CST with nicotine or PACAP increased quantal size, plausibly due to increased synthesis of CgA, CgB and SgII by CST. We conclude that CST regulates DCV quanta by acutely inhibiting catecholamine secretion and chronically increasing expression of CgA after nicotinic stimulation and CgB and SgII after PACAPergic stimulation.


Assuntos
Catecolaminas/metabolismo , Cromogranina A/fisiologia , Cromograninas/metabolismo , Nicotina/farmacologia , Fragmentos de Peptídeos/fisiologia , Polipeptídeo Hipofisário Ativador de Adenilato Ciclase/farmacologia , Animais , Cromogranina A/farmacologia , Subunidade alfa de Hormônios Glicoproteicos/metabolismo , Humanos , Norepinefrina/metabolismo , Células PC12 , Fragmentos de Peptídeos/farmacologia , Ratos , Proteínas Secretadas pela Vesícula Seminal/metabolismo , Transdução de Sinais/efeitos dos fármacos , Tirosina 3-Mono-Oxigenase/metabolismo
7.
J Cell Physiol ; 232(7): 1640-1649, 2017 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-27607345

RESUMO

The use of Doxorubicin (Dox), a frontline drug for many cancers, is often complicated by dose-limiting cardiotoxicity in approximately 20% of patients. The G-protein estrogen receptor GPER/GPR30 mediates estrogen action as the cardioprotection under certain stressful conditions. For instance, GPER activation by the selective agonist G-1 reduced myocardial inflammation, improved immunosuppression, triggered pro-survival signaling cascades, improved myocardial mechanical performance, and reduced infarct size after ischemia/reperfusion (I/R) injury. Hence, we evaluated whether ligand-activated GPER may exert cardioprotection in male rats chronically treated with Dox. 1 week of G-1 (50 µg/kg/day) intraperitoneal administration mitigated Dox (3 mg/kg/day) adverse effects, as revealed by reduced TNF-α, IL-1ß, LDH, and ROS levels. Western blotting analysis of cardiac homogenates indicated that G-1 prevents the increase in p-c-jun, BAX, CTGF, iNOS, and COX2 expression induced by Dox. Moreover, the activation of GPER rescued the inhibitory action elicited by Dox on the expression of BCL2, pERK, and pAKT. TUNEL assay indicated that GPER activation may also attenuate the cardiomyocyte apoptosis upon Dox exposure. Using ex vivo Langendorff perfused heart technique, we also found an increased systolic recovery and a reduction of both infarct size and LDH levels in rats treated with G-1 in combination with Dox respect to animals treated with Dox alone. Accordingly, the beneficial effects induced by G-1 were abrogated in the presence of the GPER selective antagonist G15. These data suggest that GPER activation mitigates Dox-induced cardiotoxicity, thus proposing GPER as a novel pharmacological target to limit the detrimental cardiac effects of Dox treatment. J. Cell. Physiol. 232: 1640-1649, 2017. © 2016 Wiley Periodicals, Inc.


Assuntos
Cardiotônicos/uso terapêutico , Cardiotoxicidade/tratamento farmacológico , Doxorrubicina/efeitos adversos , Quinolinas/uso terapêutico , Receptores Acoplados a Proteínas G/antagonistas & inibidores , Animais , Biomarcadores/metabolismo , Pressão Sanguínea/efeitos dos fármacos , Cardiotônicos/farmacologia , Cardiotoxicidade/sangue , Cardiotoxicidade/patologia , Cardiotoxicidade/fisiopatologia , Diástole/efeitos dos fármacos , Testes de Função Cardíaca/efeitos dos fármacos , Humanos , Inflamação/patologia , Interleucina-1beta/sangue , L-Lactato Desidrogenase/sangue , Ligantes , Masculino , Isquemia Miocárdica/sangue , Isquemia Miocárdica/patologia , Isquemia Miocárdica/fisiopatologia , Miócitos Cardíacos/efeitos dos fármacos , Miócitos Cardíacos/metabolismo , Estresse Oxidativo/efeitos dos fármacos , Quinolinas/farmacologia , Ratos Wistar , Espécies Reativas de Oxigênio/sangue , Receptores Acoplados a Proteínas G/genética , Receptores Acoplados a Proteínas G/metabolismo , Fator de Necrose Tumoral alfa/sangue , Função Ventricular/efeitos dos fármacos
8.
Cell Tissue Res ; 363(3): 693-712, 2016 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-26572539

RESUMO

Chromogranin A (CgA) is a prohormone and granulogenic factor in neuroendocrine tissues with a regulated secretory pathway. The impact of CgA depletion on secretory granule formation has been previously demonstrated in cell culture. However, studies linking the structural effects of CgA deficiency with secretory performance and cell metabolism in the adrenomedullary chromaffin cells in vivo have not previously been reported. Adrenomedullary content of the secreted adrenal catecholamines norepinephrine (NE) and epinephrine (EPI) was decreased 30-40 % in Chga-KO mice. Quantification of NE and EPI-storing dense core (DC) vesicles (DCV) revealed decreased DCV numbers in chromaffin cells in Chga-KO mice. For both cell types, the DCV diameter in Chga-KO mice was less (100-200 nm) than in WT mice (200-350 nm). The volume density of the vesicle and vesicle number was also lower in Chga-KO mice. Chga-KO mice showed an ~47 % increase in DCV/DC ratio, implying vesicle swelling due to increased osmotically active free catecholamines. Upon challenge with 2 U/kg insulin, there was a diminution in adrenomedullary EPI, no change in NE and a very large increase in the EPI and NE precursor dopamine (DA), consistent with increased catecholamine biosynthesis during prolonged secretion. We found dilated mitochondrial cristae, endoplasmic reticulum and Golgi complex, as well as increased synaptic mitochondria, synaptic vesicles and glycogen granules in Chga-KO mice compared to WT mice, suggesting that decreased granulogenesis and catecholamine storage in CgA-deficient mouse adrenal medulla is compensated by increased VMAT-dependent catecholamine update into storage vesicles, at the expense of enhanced energy expenditure by the chromaffin cell.


Assuntos
Catecolaminas/metabolismo , Grânulos Cromafim/metabolismo , Cromogranina A/deficiência , Metabolismo Energético , Glândulas Suprarrenais/efeitos dos fármacos , Glândulas Suprarrenais/metabolismo , Animais , Western Blotting , Grânulos Cromafim/efeitos dos fármacos , Grânulos Cromafim/ultraestrutura , Cromogranina A/metabolismo , Dopamina/metabolismo , Endocitose/efeitos dos fármacos , Retículo Endoplasmático/metabolismo , Retículo Endoplasmático/ultraestrutura , Metabolismo Energético/efeitos dos fármacos , Epinefrina/metabolismo , Exocitose/efeitos dos fármacos , Glucose/metabolismo , Glicogênio/metabolismo , Complexo de Golgi/efeitos dos fármacos , Complexo de Golgi/metabolismo , Humanos , Insulina/farmacologia , Camundongos Endogâmicos C57BL , Camundongos Knockout , Mitocôndrias/efeitos dos fármacos , Mitocôndrias/metabolismo , Norepinefrina/metabolismo , Nervos Esplâncnicos/efeitos dos fármacos , Nervos Esplâncnicos/metabolismo , Vesículas Sinápticas/efeitos dos fármacos , Vesículas Sinápticas/metabolismo
9.
J Cell Mol Med ; 19(7): 1492-503, 2015 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-25904190

RESUMO

Heat shock proteins (HSPs), highly conserved in all organisms, act as molecular chaperones activated by several stresses. The HSP70 class of stress-induced proteins is the most studied subtype in cardiovascular and inflammatory disease. Because of the high similarity between plant and mammalian HSP70, the aim of this work was to evaluate whether recombinant HSP70 of plant origin (r-AtHSP70) was able to protect rat cardiac and hepatic function under ischemic and sepsis conditions. We demonstrated for the first time that, in ex vivo isolated and perfused rat heart, exogenous r-AtHSP70 exerted direct negative inotropic and lusitropic effects via Akt/endothelial nitric oxide synthase pathway, induced post-conditioning cardioprotection via Reperfusion Injury Salvage Kinase and Survivor Activating Factor Enhancement pathways, and did not cause hepatic damage. In vivo administration of r-AtHSP70 protected both heart and liver against lipopolysaccharide-dependent sepsis, as revealed by the reduced plasma levels of interleukin-1ß, tumour necrosis factor alpha, aspartate aminotransferase and alanine aminotransferase. These results suggest exogenous r-AtHSP70 as a molecular modulator able to protect myocardial function and to prevent cardiac and liver dysfunctions during inflammatory conditions.


Assuntos
Proteínas de Arabidopsis/metabolismo , Proteínas de Choque Térmico HSP70/metabolismo , Fígado/metabolismo , Isquemia Miocárdica/mortalidade , Miocárdio/metabolismo , Proteínas Recombinantes/metabolismo , Sepse/prevenção & controle , Animais , Western Blotting , Eletroforese em Gel de Poliacrilamida , Lipopolissacarídeos/farmacologia , Fígado/efeitos dos fármacos , Fígado/patologia , Masculino , Dados de Sequência Molecular , Infarto do Miocárdio/patologia , Infarto do Miocárdio/fisiopatologia , Isquemia Miocárdica/patologia , Isquemia Miocárdica/fisiopatologia , Miocárdio/patologia , Ratos Wistar , Sepse/complicações , Sepse/patologia , Sepse/fisiopatologia , Transdução de Sinais/efeitos dos fármacos , Sístole/efeitos dos fármacos
10.
Am J Physiol Regul Integr Comp Physiol ; 305(4): R443-51, 2013 Aug 15.
Artigo em Inglês | MEDLINE | ID: mdl-23785074

RESUMO

Hydrogen sulfide (H2S) has recently emerged as an important mediator of mammalian cardiovascular homeostasis. In nonmammalian vertebrates, little is known about the cardiac effects of H2S. This study aimed to evaluate, in the avascular heart of the frog, Rana esculenta, whether and to what extent H2S affects the cardiac performance, and what is the mechanism of action responsible for the observed effects. Results were analyzed in relation to those obtained in the rat heart, used as the mammalian model. Isolated and perfused (working and Langendorff) hearts, Western blot analysis, and modified biotin switch (S-sulfhydration) assay were used. In the frog heart, NaHS (used as H2S donor, 10⁻¹²/10⁻7 M) dose-dependently decreased inotropism. This effect was reduced by glibenclamide (KATP channels blocker), NG-monomethyl-L-arginine (NOS inhibitor), 1H-[1,2,4] oxadiazolo-[4,3-a]quinoxalin-1-one (guanylyl cyclase inhibitor), KT5823 (PKG inhibitor), and it was blocked by Akt1/2 (Akt inhibitor) and by detergent Triton X-100. In the rat, in addition to the classic negative inotropic effect, NaHS (10⁻¹²/10⁻7 M) exhibited negative lusitropism. In both frog and rat hearts, NaHS treatment induced Akt and eNOS phosphorylation and an increased cardiac protein S-sulfhydration that, in the rat heart, includes phospholamban. Our data suggest that H2S represents a phylogenetically conserved cardioactive molecule. Results obtained on the rat heart extend the role of H2S also to cardiac relaxation. H2S effects involve KATP channels, the Akt/NOS-cGMP/PKG pathway, and S-sulfhydration of cardiac proteins.


Assuntos
Proteínas de Anfíbios/metabolismo , Proteínas de Ligação ao Cálcio/metabolismo , Coração/efeitos dos fármacos , Sulfeto de Hidrogênio/farmacologia , Miocárdio/enzimologia , Óxido Nítrico Sintase Tipo III/metabolismo , Proteínas Proto-Oncogênicas c-akt/metabolismo , Transdução de Sinais/efeitos dos fármacos , Sulfetos/farmacologia , Animais , Proteínas Quinases Dependentes de GMP Cíclico/antagonistas & inibidores , Proteínas Quinases Dependentes de GMP Cíclico/metabolismo , Detergentes/farmacologia , Relação Dose-Resposta a Droga , Inibidores Enzimáticos/farmacologia , Feminino , Guanilato Ciclase/antagonistas & inibidores , Guanilato Ciclase/metabolismo , Sulfeto de Hidrogênio/metabolismo , Canais KATP/efeitos dos fármacos , Canais KATP/metabolismo , Masculino , Contração Miocárdica/efeitos dos fármacos , Óxido Nítrico Sintase Tipo III/antagonistas & inibidores , Bloqueadores dos Canais de Potássio/farmacologia , Processamento de Proteína Pós-Traducional , Proteínas Proto-Oncogênicas c-akt/antagonistas & inibidores , Rana esculenta , Ratos , Ratos Wistar , Sulfetos/metabolismo , Fatores de Tempo
11.
FASEB J ; 26(7): 2888-98, 2012 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-22459152

RESUMO

Three forms of serpinin peptides, serpinin (Ala26Leu), pyroglutaminated (pGlu)-serpinin (pGlu23Leu), and serpinin-Arg-Arg-Gly (Ala29Gly), are derived from cleavage at pairs of basic residues in the highly conserved C terminus of chromogranin A (CgA). Serpinin induces PN-1 expression in neuroendocrine cells to up-regulate granule biogenesis via a cAMP-protein kinase A-Sp1 pathway, while pGlu-serpinin inhibits cell death. The aim of this study was to test the hypothesis that serpinin peptides are produced in the heart and act as novel ß-adrenergic-like cardiac modulators. We detected serpinin peptides in the rat heart by HPLC and ELISA methods. The peptides included predominantly Ala29Gly and pGlu-serpinin and a small amount of serpinin. Using the Langendorff perfused rat heart to evaluate the hemodynamic changes, we found that serpinin and pGlu-serpinin exert dose-dependent positive inotropic and lusitropic effects at 11-165 nM, within the first 5 min after administration. The pGlu-serpinin-induced contractility is more potent than that of serpinin, starting from 1 nM. Using the isolated rat papillary muscle preparation to measure contractility in terms of tension development and muscle length, we further corroborated the pGlu-serpinin-induced positive inotropism. Ala29Gly was unable to affect myocardial performance. Both pGlu-serpinin and serpinin act through a ß1-adrenergic receptor/adenylate cyclase/cAMP/PKA pathway, indicating that, contrary to the ß-blocking profile of the other CgA-derived cardiosuppressive peptides, vasostatin-1 and catestatin, these two C-terminal peptides act as ß-adrenergic-like agonists. In cardiac tissue extracts, pGlu-serpinin increased intracellular cAMP levels and phosphorylation of phospholamban (PLN)Ser16, ERK1/2, and GSK-3ß. Serpinin and pGlu-serpinin peptides emerge as novel ß-adrenergic inotropic and lusitropic modulators, suggesting that CgA and the other derived cardioactive peptides can play a key role in how the myocardium orchestrates its complex response to sympathochromaffin stimulation.


Assuntos
Agonistas de Receptores Adrenérgicos beta 1/química , Agonistas de Receptores Adrenérgicos beta 1/farmacologia , Cardiotônicos/química , Cardiotônicos/farmacologia , Cromogranina A/química , Cromogranina A/fisiologia , Coração/efeitos dos fármacos , Coração/fisiologia , Fragmentos de Peptídeos/química , Fragmentos de Peptídeos/fisiologia , Sequência de Aminoácidos , Substituição de Aminoácidos , Animais , Cromogranina A/genética , Cromogranina A/farmacologia , Técnicas In Vitro , Masculino , Dados de Sequência Molecular , Contração Miocárdica/efeitos dos fármacos , Miocárdio/química , Músculos Papilares/efeitos dos fármacos , Músculos Papilares/fisiologia , Fragmentos de Peptídeos/genética , Fragmentos de Peptídeos/farmacologia , Ratos , Ratos Wistar
12.
Cells ; 12(7)2023 03 29.
Artigo em Inglês | MEDLINE | ID: mdl-37048116

RESUMO

Cardiac lipotoxicity is an important contributor to cardiovascular complications during obesity. Given the fundamental role of the endoplasmic reticulum (ER)-resident Selenoprotein T (SELENOT) for cardiomyocyte differentiation and protection and for the regulation of glucose metabolism, we took advantage of a small peptide (PSELT), derived from the SELENOT redox-active motif, to uncover the mechanisms through which PSELT could protect cardiomyocytes against lipotoxicity. To this aim, we modeled cardiac lipotoxicity by exposing H9c2 cardiomyocytes to palmitate (PA). The results showed that PSELT counteracted PA-induced cell death, lactate dehydrogenase release, and the accumulation of intracellular lipid droplets, while an inert form of the peptide (I-PSELT) lacking selenocysteine was not active against PA-induced cardiomyocyte death. Mechanistically, PSELT counteracted PA-induced cytosolic and mitochondrial oxidative stress and rescued SELENOT expression that was downregulated by PA through FAT/CD36 (cluster of differentiation 36/fatty acid translocase), the main transporter of fatty acids in the heart. Immunofluorescence analysis indicated that PSELT also relieved the PA-dependent increase in CD36 expression, while in SELENOT-deficient cardiomyocytes, PA exacerbated cell death, which was not mitigated by exogenous PSELT. On the other hand, PSELT improved mitochondrial respiration during PA treatment and regulated mitochondrial biogenesis and dynamics, preventing the PA-provoked decrease in PGC1-α and increase in DRP-1 and OPA-1. These findings were corroborated by transmission electron microscopy (TEM), revealing that PSELT improved the cardiomyocyte and mitochondrial ultrastructures and restored the ER network. Spectroscopic characterization indicated that PSELT significantly attenuated infrared spectral-related macromolecular changes (i.e., content of lipids, proteins, nucleic acids, and carbohydrates) and also prevented the decrease in membrane fluidity induced by PA. Our findings further delineate the biological significance of SELENOT in cardiomyocytes and indicate the potential of its mimetic PSELT as a protective agent for counteracting cardiac lipotoxicity.


Assuntos
Miócitos Cardíacos , Palmitatos , Palmitatos/toxicidade , Palmitatos/metabolismo , Miócitos Cardíacos/metabolismo , Estresse Oxidativo , Ácidos Graxos/metabolismo , Mitocôndrias/metabolismo
13.
Am J Physiol Heart Circ Physiol ; 302(2): H431-42, 2012 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-22058158

RESUMO

The chromogranin A (CHGA)-derived peptide catestatin (CST: hCHGA(352-372)) is a noncompetitive catecholamine-release inhibitor that exerts vasodilator, antihypertensive, and cardiosuppressive actions. We have shown that CST directly influences the basal performance of the vertebrate heart where CST dose dependently induced a nitric oxide-cGMP-dependent cardiosuppression and counteracted the effects of adrenergic stimulation through a noncompetitive antagonism. Here, we sought to determine the specific intracardiac signaling activated by CST in the rat heart. Physiological analyses performed on isolated, Langendorff-perfused cardiac preparations revealed that CST-induced negative inotropism and lusitropism involve ß(2)/ß(3)-adrenergic receptors (ß(2)/ß(3)-AR), showing a higher affinity for ß(2)-AR. Interaction with ß(2)-AR activated phosphatidylinositol 3-kinase/endothelial nitric oxide synthase (eNOS), increased cGMP levels, and induced activation of phosphodiesterases type 2 (PDE2), which was found to be involved in the antiadrenergic action of CST as evidenced by the decreased cAMP levels. CST-dependent negative cardiomodulation was abolished by functional denudation of the endothelium with Triton. CST also increased the eNOS expression in cardiac tissue and human umbilical vein endothelial cells. cells, confirming the involvement of the vascular endothelium. In ventricular extracts, CST increased S-nitrosylation of both phospholamban and ß-arrestin, suggesting an additional mechanism for intracellular calcium modulation and ß-adrenergic responsiveness. We conclude that PDE2 and S-nitrosylation play crucial roles in the CST regulation of cardiac function. Our results are of importance in relation to the putative application of CST as a cardioprotective agent against stress, including excessive sympathochromaffin overactivation.


Assuntos
Anti-Hipertensivos/farmacologia , Fármacos Cardiovasculares/farmacologia , Cromogranina A/farmacologia , Exonucleases/metabolismo , Coração/efeitos dos fármacos , Miocárdio/metabolismo , Óxido Nítrico/metabolismo , Fragmentos de Peptídeos/farmacologia , Transdução de Sinais/fisiologia , Animais , Arrestinas/metabolismo , Proteínas de Ligação ao Cálcio/metabolismo , Células Endoteliais da Veia Umbilical Humana/efeitos dos fármacos , Células Endoteliais da Veia Umbilical Humana/metabolismo , Humanos , Óxido Nítrico Sintase Tipo III/metabolismo , Fosfatidilinositol 3-Quinases , Ratos , Receptores Adrenérgicos beta/metabolismo , beta-Arrestinas
14.
Basic Res Cardiol ; 107(4): 272, 2012 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-22699364

RESUMO

We recently reported that heart expresses functional receptors for the anorexigenic glucagon-like peptide (GLP)-2. Activation of these cardiac receptors affected basal heart performance through extracellular regulated kinase (ERK1/2) activation. Since ERK1/2 is considered one of the prosurvival kinases of postconditioning cardioprotective pathways, we hypothesized that GLP-2 directly protects the heart against ischemia/reperfusion (I/R) injury via prosurvival kinases. Wistar rat hearts were retrogradely perfused on a Langendorff perfusion apparatus. After 40-min stabilization, hearts underwent 30-min global ischemia and 120-min reperfusion (I/R group). In GLP-2 group, the hearts received 20-min GLP-2 (10(-7) M) infusion at the beginning of the 120-min reperfusion. Perfusion pressure and left ventricular pressure (LVP) were monitored. Infarct size was evaluated by nitroblue-tetrazolium staining. Compared with the I/R group, GLP-2-treated hearts showed a significant reduction of infarct size and of postischemic diastolic LVP (index of contracture), together with a sharp improvement of developed LVP recovery (index of contractility). The protective effects were abolished by co-infusion with phosphatidylinositol 3-kinase inhibitor, Wortmannin (WT), the ERK1/2 inhibitor, PD98059, or the mitochondrial K(ATP) channel blocker, 5-hydroxydecanoate. GLP-2 effects were accompanied by increased phosphorylation of protein kinase B (PKB/Akt), ERK1/2 and glycogen synthase kinase (GSK3ß). After 7-min reperfusion, WT blocked Akt and GSK3ß phosphorylation. After 30-min reperfusion, WT inhibited phosphorylation of all kinases. In conclusion, the data suggest that GLP-2, given in early reperfusion, as postconditioning, protects against myocardial I/R injury, limiting infarct size, and improving post-ischemic mechanical recovery. It seems that the GLP-2-protection of rat heart involves multiple prosurvival kinases and mitochondrial K(ATP) channels.


Assuntos
Peptídeo 2 Semelhante ao Glucagon/farmacologia , Pós-Condicionamento Isquêmico/métodos , Sistema de Sinalização das MAP Quinases/fisiologia , Traumatismo por Reperfusão Miocárdica/metabolismo , Miocárdio/patologia , Canais de Potássio/metabolismo , Animais , Western Blotting , Inibidores Enzimáticos/farmacologia , Sistema de Sinalização das MAP Quinases/efeitos dos fármacos , Masculino , Traumatismo por Reperfusão Miocárdica/prevenção & controle , Miocárdio/metabolismo , Ratos , Ratos Wistar
15.
Nitric Oxide ; 27(1): 40-9, 2012 Jun 30.
Artigo em Inglês | MEDLINE | ID: mdl-22555002

RESUMO

The length-active tension relation or heterometric regulation (Frank-Starling mechanism) is modulated by nitric oxide (NO) which, released in pulsatile fashion from the beating heart, improves myocardial relaxation and diastolic distensibility. The NO signaling is also implicated in the homeometric regulation exerted by extrinsic factors such as autonomic nervous system, endocrine and humoral agents. In the in vitro working frog heart, the Chromogranin A (CGA)-derived peptide, Catestatin (CTS; bovine CGA344-364), exerts a direct cardio-suppressive action through a NOS-NO-cGMP-mediated mechanism which requires the functional integrity of the endocardial endothelium (EE) and its endothelin-1 B type (ETB) receptor. However, functional interplay between NO and CTS and their role in the Frank-Starling response of the frog heart are lacking. Here we show that CTS improves the sensitivity to preload increases similar to that exerted by NO. This effect is abolished by inhibition of NO synthase (L-NAME), guanylate cyclase (ODQ), protein kinase G (KT5823), PI3K (Wortmannin), as well as by the functional damage of EE (Triton X-100) suggesting that CTS operates through an EE-dependent NO release. On the whole, the use of the avascular frog heart revealed the EE as major sensor-transducer interface between the physical (volume load) and chemical (CTS) stimuli, NO functioning as a connector between heterometric and homeometric regulation.


Assuntos
Cromogranina A/metabolismo , Coração/efeitos dos fármacos , Miocárdio/metabolismo , Óxido Nítrico/metabolismo , Fragmentos de Peptídeos/metabolismo , Volume Sistólico/efeitos dos fármacos , Análise de Variância , Animais , Western Blotting , Cálcio/metabolismo , Endocárdio/metabolismo , Feminino , Masculino , Doadores de Óxido Nítrico/metabolismo , Óxido Nítrico Sintase Tipo III/metabolismo , Proteínas Proto-Oncogênicas c-akt/metabolismo , Ranidae
16.
Vascul Pharmacol ; 145: 107003, 2022 08.
Artigo em Inglês | MEDLINE | ID: mdl-35680059

RESUMO

Hypertrophic cardiomyopathy (HCM) is an autosomal dominant disorder that associates with nucleotide sequence variants in genes encoding sarcomere related proteins, and is recognized as the most common heritable cardiac diseases. Clinically, HCM can be extremely variable and this makes the diagnosis difficult until the development of serious or fatal events. Nevertheless, the main hallmark of HCM is represented by left ventricle hypertrophy that can be occasionally associated to cardiac arrhythmias, chest pain, diastolic dysfunction, obstruction of left ventricular outflow tract. The present review aims to focus on the complex interplay existing between the multifaceted non-genetic molecular mechanisms underlying HCM onset and progression, and the key pathophysiological role of abnormal coronary artery function. As the clinical course of HCM shows a mortality rate per year up to 6% the importance of innovative therapeutic strategies will be discussed, especially in regard to the use of potential endogenous coronary modulators to be enrolled as modifiers of HCM phenotype.


Assuntos
Cardiomiopatia Hipertrófica , Cardiomiopatia Hipertrófica/complicações , Cardiomiopatia Hipertrófica/tratamento farmacológico , Cardiomiopatia Hipertrófica/genética , Coração , Humanos , Hipertrofia Ventricular Esquerda , Fenótipo , Sarcômeros/genética , Sarcômeros/metabolismo
17.
Biomedicines ; 10(3)2022 Feb 22.
Artigo em Inglês | MEDLINE | ID: mdl-35327322

RESUMO

Mitochondria are key organelles for the maintenance of myocardial tissue homeostasis, playing a pivotal role in adenosine triphosphate (ATP) production, calcium signaling, redox homeostasis, and thermogenesis, as well as in the regulation of crucial pathways involved in cell survival. On this basis, it is not surprising that structural and functional impairments of mitochondria can lead to contractile dysfunction, and have been widely implicated in the onset of diverse cardiovascular diseases, including ischemic cardiomyopathy, heart failure, and stroke. Several studies support mitochondrial targets as major determinants of the cardiotoxic effects triggered by an increasing number of chemotherapeutic agents used for both solid and hematological tumors. Mitochondrial toxicity induced by such anticancer therapeutics is due to different mechanisms, generally altering the mitochondrial respiratory chain, energy production, and mitochondrial dynamics, or inducing mitochondrial oxidative/nitrative stress, eventually culminating in cell death. The present review summarizes key mitochondrial processes mediating the cardiotoxic effects of anti-neoplastic drugs, with a specific focus on anthracyclines (ANTs), receptor tyrosine kinase inhibitors (RTKIs) and proteasome inhibitors (PIs).

19.
J Clin Med ; 10(4)2021 Feb 12.
Artigo em Inglês | MEDLINE | ID: mdl-33673114

RESUMO

Cardiac metabolism represents a crucial and essential connecting bridge between the healthy and diseased heart. The cardiac muscle, which may be considered an omnivore organ with regard to the energy substrate utilization, under physiological conditions mainly draws energy by fatty acids oxidation. Within cardiomyocytes and their mitochondria, through well-concerted enzymatic reactions, substrates converge on the production of ATP, the basic chemical energy that cardiac muscle converts into mechanical energy, i.e., contraction. When a perturbation of homeostasis occurs, such as an ischemic event, the heart is forced to switch its fatty acid-based metabolism to the carbohydrate utilization as a protective mechanism that allows the maintenance of its key role within the whole organism. Consequently, the flexibility of the cardiac metabolic networks deeply influences the ability of the heart to respond, by adapting to pathophysiological changes. The aim of the present review is to summarize the main metabolic changes detectable in the heart under acute and chronic cardiac pathologies, analyzing possible therapeutic targets to be used. On this basis, cardiometabolism can be described as a crucial mechanism in keeping the physiological structure and function of the heart; furthermore, it can be considered a promising goal for future pharmacological agents able to appropriately modulate the rate-limiting steps of heart metabolic pathways.

20.
Acta Physiol (Oxf) ; 231(4): e13570, 2021 04.
Artigo em Inglês | MEDLINE | ID: mdl-33073482

RESUMO

AIM: Chromogranin A (CgA), a 439-residue long protein, is an important cardiovascular regulator and a precursor of various bioactive fragments. Under stressful/pathological conditions, CgA cleavage generates the CgA1-373 proangiogenic fragment. The present work investigated the possibility that human CgA1-373 influences the mammalian cardiac performance, evaluating the role of its C-terminal sequence. METHODS: Haemodynamic assessment was performed on an ex vivo Langendorff rat heart model, while mechanistic studies were performed using perfused hearts, H9c2 cardiomyocytes and in silico. RESULTS: On the ex vivo heart, CgA1-373 elicited direct dose-dependent negative inotropism and vasodilation, while CgA1-372 , a fragment lacking the C-terminal R373 residue, was ineffective. Antibodies against the PGPQLR373 C-terminal sequence abrogated the CgA1-373 -dependent cardiac and coronary modulation. Ex vivo studies showed that CgA1-373 -dependent effects were mediated by endothelium, neuropilin-1 (NRP1) receptor, Akt/NO/Erk1,2 pathways, nitric oxide (NO) production and S-nitrosylation. In vitro experiments on H9c2 cardiomyocytes indicated that CgA1-373 also induced eNOS activation directly on the cardiomyocyte component by NRP1 targeting and NO involvement and provided beneficial action against isoproterenol-induced hypertrophy, by reducing the increase in cell surface area and brain natriuretic peptide (BNP) release. Molecular docking and all-atom molecular dynamics simulations strongly supported the hypothesis that the C-terminal R373 residue of CgA1-373 directly interacts with NRP1. CONCLUSION: These results suggest that CgA1-373 is a new cardioregulatory hormone and that the removal of R373 represents a critical switch for turning "off" its cardioregulatory activity.


Assuntos
Neuropilina-1 , Fragmentos de Peptídeos , Animais , Cromogranina A , Humanos , Simulação de Acoplamento Molecular , Miócitos Cardíacos , Ratos
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa