Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 49
Filtrar
1.
Molecules ; 27(3)2022 Feb 03.
Artigo em Inglês | MEDLINE | ID: mdl-35164296

RESUMO

The transient vanilloid receptor potential type 1 (TRPV1) regulates neuronal and vascular functions mediated by nitric oxide (NO) and by the calcitonin gene-related peptide (CGRP). Here, we study the participation of TRPV1 in the regulation of myocardial injury caused by ischemia-reperfusion and in the control of NO, tetrahydrobiopterin (BH4), the cGMP pathway, CGRP, total antioxidant capacity (TAC), malondialdehyde (MDA) and phosphodiesterase-3 (PDE-3). Isolated hearts of Wistar rats perfused according to the Langendorff technique were used to study the effects of an agonist of TRPV1, capsaicin (CS), an antagonist, capsazepine (CZ), and their combination CZ+CS. The hearts were subjected to three conditions: (1) control, (2) ischemia and (3) ischemia-reperfusion. We determined cardiac mechanical activity and the levels of NO, cGMP, BH4, CGRP, TAC, MDA and PDE-3 in ventricular tissue after administration of CS, CZ and CZ+CS. Western blots were used to study the expressions of eNOS, iNOS and phosphorylated NOS (pNOS). Structural changes were determined by histological evaluation. CS prevented damage caused by ischemia-reperfusion by improving cardiac mechanical activity and elevating the levels of NO, cGMP, BH4, TAC and CGRP. TRPV1 and iNOS expression were increased under ischemic conditions, while eNOS and pNOS were not modified. We conclude that the activation of TRPV1 constitutes a therapeutic possibility to counteract the damage caused by ischemia and reperfusion by regulating the NO pathway through CGRP.


Assuntos
Coração/fisiopatologia , Traumatismo por Reperfusão Miocárdica/fisiopatologia , Óxido Nítrico/metabolismo , Estresse Oxidativo , Canais de Cátion TRPV/metabolismo , Animais , Masculino , Traumatismo por Reperfusão Miocárdica/metabolismo , Ratos , Ratos Wistar , Transdução de Sinais
2.
Eur Respir J ; 56(1)2020 07.
Artigo em Inglês | MEDLINE | ID: mdl-32241831

RESUMO

BACKGROUND: In animal models of pulmonary arterial hypertension (PAH), angiotensin-converting enzyme (ACE)2 and angiotensin (Ang)-(1-7) have been shown to have vasodilatory, antiproliferative, antifibrotic and antihypertrophic properties. However, the status and role of the ACE2-Ang(1-7) axis in human PAH is incompletely understood. METHODS: We studied 85 patients with a diagnosis of PAH of distinct aetiologies. 55 healthy blood donors paired for age and sex served as controls. Blood samples were obtained from the pulmonary artery in patients with PAH during right heart catheterisation. Peripheral blood was obtained for both groups. Ang(1-7) and -II were measured using zone capillary electrophoresis. Aldosterone, Ang(1-9), AngA and ACE2 were measured using ELISA, and ACE2 activity was determined enzymatically. RESULTS: Of the 85 patients, 47 had idiopathic PAH, 25 had PAH associated with congenital heart disease and 13 had PAH associated with collagen vascular disease. Compared to controls, patients with PAH had a higher concentration of AngII (median 1.03, interquartile range 0.72-1.88 pmol·mL-1 versus 0.19, 0.10-0.37 pmol·mL-1; p<0.001) and of aldosterone (88.7, 58.7-132 ng·dL-1 versus 12.9, 9.55-19.9 ng·dL-1; p<0.001). Conversely, PAH patients had a lower concentration of Ang(1-7) than controls (0.69, 0.474-0.91 pmol·mL-1 versus 4.07, 2.82-6.73 pmol·mL-1; p<0.001), and a lower concentration of Ang(1-9) and AngA. Similarly, the ACE2 concentration was higher than in controls (8.7, 5.35-13.2 ng·mL-1 versus 4.53, 1.47-14.3 ng·mL-1; p=0.011), whereas the ACE2 activity was significantly reduced (1.88, 1.08-2.81 nmol·mL-1 versus 5.97, 3.1-17.8 nmol·mL-1; p<0.001). No significant differences were found among the three different aetiological forms of PAH. CONCLUSIONS: The AngII-ACE2-Ang(1-7) axis appears to be altered in human PAH and we propose that this imbalance, in favour of AngII, plays a role in the pathogenesis of the severe PAH. Further mechanistic studies are warranted.


Assuntos
Enzima de Conversão de Angiotensina 2 , Hipertensão Arterial Pulmonar , Angiotensina I , Animais , Humanos , Fragmentos de Peptídeos , Peptidil Dipeptidase A
3.
Molecules ; 24(2)2019 Jan 12.
Artigo em Inglês | MEDLINE | ID: mdl-30642049

RESUMO

Myocardial infarction (MI) initiates an inflammatory response that promotes both beneficial and deleterious effects. The early response helps the myocardium to remove damaged tissue; however, a prolonged later response brings cardiac remodeling characterized by functional, metabolic, and structural pathological changes. Current pharmacological treatments have failed to reverse ischemic-induced cardiac damage. Therefore, our aim was to study if clofibrate treatment was capable of decreasing inflammation and apoptosis, and reverse ventricular remodeling and MI-induced functional damage. Male Wistar rats were assigned to (1) Sham coronary artery ligation (Sham) or (2) Coronary artery ligation (MI). Seven days post-MI, animals were further divided to receive vehicle (V) or clofibrate (100 mg/kg, C) for 7 days. The expression of IL-6, TNF-α, and inflammatory related molecules ICAM-1, VCAM-1, MMP-2 and -9, nuclear NF-kB, and iNOS, were elevated in MI-V. These inflammatory biomarkers decreased in MI-C. Also, apoptotic proteins (Bax and pBad) were elevated in MI-V, while clofibrate augmented anti-apoptotic proteins (Bcl-2 and 14-3-3ε). Clofibrate also protected MI-induced changes in ultra-structure. The ex vivo evaluation of myocardial functioning showed that left ventricular pressure and mechanical work decreased in infarcted rats; clofibrate treatment raised those parameters to control values. Echocardiogram showed that clofibrate partially reduced LV dilation. In conclusion, clofibrate decreases cardiac remodeling, decreases inflammatory molecules, and partly preserves myocardial diameters.


Assuntos
Clofibrato/farmacologia , Hipolipemiantes/farmacologia , Inflamação/patologia , Infarto do Miocárdio/tratamento farmacológico , Infarto do Miocárdio/patologia , Remodelação Ventricular/efeitos dos fármacos , Animais , Citocinas/metabolismo , Modelos Animais de Doenças , Inflamação/metabolismo , Mediadores da Inflamação/metabolismo , Infarto do Miocárdio/metabolismo , PPAR alfa/metabolismo , Roedores
4.
Int J Mol Sci ; 18(11)2017 Nov 14.
Artigo em Inglês | MEDLINE | ID: mdl-29135932

RESUMO

Numerous studies have supported a role for oxidative stress in the development of ischemic damage and endothelial dysfunction. Crataegus oxyacantha (Co) and Rosmarinus officinalis (Ro) extracts are polyphenolic-rich compounds that have proven to be efficient in the treatment of cardiovascular diseases. We studied the effect of extracts from Co and Ro on the myocardial damage associated with the oxidative status and to the production of different vasoactive agents. Rats were assigned to the following groups: (a) sham; (b) vehicle-treated myocardial infarction (MI) (MI-V); (c) Ro extract-treated myocardial infarction (MI-Ro); (d) Co extract-treated myocardial infarction (MI-Co); or (e) Ro+Co-treated myocardial infarction (MI-Ro+Co). Ro and Co treatments increased total antioxidant capacity, the expression of superoxide dismutase (SOD)-Cu2+/Zn2+, SOD-Mn2+, and catalase, with the subsequent decline of malondialdehyde and 8-hydroxy-2'-deoxyguanosine levels. The extracts diminished vasoconstrictor peptide levels (angiotensin II and endothelin-1), increased vasodilators agents (angiotensin 1-7 and bradikinin) and improved nitric oxide metabolism. Polyphenol treatment restored the left intraventricular pressure and cardiac mechanical work. We conclude that Ro and Co treatment attenuate morphological and functional ischemic-related changes by both an oxidant load reduction and improvement of the balance between vasoconstrictors and vasodilators.


Assuntos
Fármacos Cardiovasculares/uso terapêutico , Crataegus/química , Infarto do Miocárdio/tratamento farmacológico , Infarto do Miocárdio/patologia , Estresse Oxidativo/efeitos dos fármacos , Extratos Vegetais/uso terapêutico , Rosmarinus/química , Angiotensinas/farmacologia , Animais , Biomarcadores/metabolismo , Bradicinina/farmacologia , Fármacos Cardiovasculares/farmacologia , Cromatografia Líquida de Alta Pressão , Testes de Função Cardíaca , Hemodinâmica/efeitos dos fármacos , Masculino , Infarto do Miocárdio/fisiopatologia , Miocárdio/patologia , Miocárdio/ultraestrutura , Óxido Nítrico Sintase Tipo III/metabolismo , Extratos Vegetais/farmacologia , Folhas de Planta/química , Ratos Wistar , Vasoconstrição/efeitos dos fármacos
5.
Can J Physiol Pharmacol ; 94(6): 634-42, 2016 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-27050838

RESUMO

Myocardial infarction (MI) has been associated with an inflammatory response and a rise in TNF-α, interleukin (IL)-1ß, and IL-6. Peroxisome proliferator-activated receptors (PPARs) promote a decreased expression of inflammatory molecules. We aimed to study whether PPAR stimulation by clofibrate decreases inflammation and reduces infarct size in rats with MI. Male Wistar rats were randomized into 3 groups: control, MI + vehicle, and MI + clofibrate (100 mg/kg). Treatment was administered for 3 consecutive days, previous to 2 h of MI. MI induced an increase in protein expression, mRNA content, and enzymatic activity of inducible nitric oxide synthase (iNOS). Additionally, MI incited an increased expression of matrix metalloproteinase (MMP)-2 and MMP-9, intercellular adhesion molecule (ICAM)-1, and IL-6. MI also elevated the nuclear content of nuclear factor-κB (NF-κB) and decreased IκB, both in myocyte nuclei and cytosol. Clofibrate treatment prevented MI-induced changes in iNOS, MMP-2 and MMP-9, ICAM-1, IL-6, NF-κB, and IκB. Infarct size was smaller in clofibrate-treated rats compared to MI-vehicle animals. In silico analysis exhibited 3 motifs shared by genes from renin-angiotensin system, PPARα, iNOS, MMP-2 and MMP-9, ICAM-1, and VCAM-1, suggesting a cross regulation. In conclusion, PPARα-stimulation prevents overexpression of pro-inflammatory molecules and preserves viability in an experimental model of acute MI.


Assuntos
Modelos Animais de Doenças , Regulação para Baixo/fisiologia , Mediadores da Inflamação/metabolismo , Infarto do Miocárdio/metabolismo , PPAR alfa/biossíntese , Animais , Clofibrato/farmacologia , Clofibrato/uso terapêutico , Regulação da Expressão Gênica , Masculino , Infarto do Miocárdio/tratamento farmacológico , PPAR alfa/genética , Distribuição Aleatória , Ratos , Ratos Wistar
6.
J Cardiovasc Pharmacol ; 65(5): 430-7, 2015 May.
Artigo em Inglês | MEDLINE | ID: mdl-25658458

RESUMO

We have recently demonstrated that peroxisome proliferator-activated receptor alpha (PPARα) stimulation lowers the production of angiotensin II while increasing the production of Ang-(1-7), both in cardiac and plasmatic level. This stimulation improves nitric oxide bioavailability, preserving cardiac histologic features and functioning. Based on these results, we decided to study the effect of PPARα stimulation on renin-angiotensin system components of ischemic myocardium. Male Wistar rats (weighing 300-350 g) were assigned to the following groups: (1) sham, (2) myocardial ischemia vehicle-treated (MI-V), and (3) myocardial ischemia clofibrate-treated. Expression of the angiotensin-converting enzyme increased during ischemia, whereas clofibrate-treated group remained comparable to control. Activation of the PPARα receptor stimulated the expression of angiotensin-converting enzyme-2; while the activity of this enzyme was increased in MI-V, clofibrate inhibited any change. The concentration of bradykinin and phospho-Akt(SER473) in homogenate increased in the animals treated with the drug. Mas receptor expression increased in MI-V rats. In conclusion, stimulation of PPARα by clofibrate prevents an increase in the activity of renin-angiotensin system and promotes the production of vasodilator substances.


Assuntos
Clofibrato/farmacologia , Isquemia Miocárdica/tratamento farmacológico , Miocárdio/metabolismo , PPAR alfa/agonistas , Sistema Renina-Angiotensina/efeitos dos fármacos , Enzima de Conversão de Angiotensina 2 , Animais , Bradicinina/metabolismo , Modelos Animais de Doenças , Ativação Enzimática , Masculino , Isquemia Miocárdica/metabolismo , Isquemia Miocárdica/fisiopatologia , PPAR alfa/metabolismo , Peptidil Dipeptidase A/metabolismo , Fosforilação , Proto-Oncogene Mas , Proteínas Proto-Oncogênicas/metabolismo , Proteínas Proto-Oncogênicas c-akt/metabolismo , Ratos Wistar , Receptores Acoplados a Proteínas G/metabolismo , Serina , Transdução de Sinais/efeitos dos fármacos , Vasodilatação/efeitos dos fármacos
7.
Can J Physiol Pharmacol ; 93(4): 299-308, 2015 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-25761067

RESUMO

We investigated the involvement of cyclooxygenase-2 (COX-2) and the renin-angiotensin system in N(G)-nitro-L-arginine methyl ester (L-NAME)-induced hypertension. Male Wistar rats were treated with L-NAME (75.0 mg·(kg body mass)(-1)·day(-1), in their drinking water) for different durations (1-33 days). COX-2 and renin mRNA were measured using real-time PCR in the renal cortex, and prostanoids were assessed in the renal perfusate, whereas angiotensin II (Ang II) and Ang (1-7) were quantified in plasma. In some rats, nitric oxide synthase inhibition was carried out in conjunction with oral administration of captopril (30.0 mg·kg(-1)·day(-1)) or celecoxib (1.0 mg·kg(-1)·day(-1)) for 2 or 19 days. We found a parallel increase in renocortical COX-2 and renin mRNA starting at day 2 of treatment with L-NAME, and both peaked at 19-25 days. In addition, L-NAME increased renal 6-Keto-PGF(1α) (prostacyclin (PGI2) metabolite) and plasma Ang II from day 2, but reduced plasma Ang (1-7) at day 19. Captopril prevented the increase in blood pressure, which was associated with lower plasma Ang II and increased COX-2-derived 6-Keto-PGF(1α) at day 2 and plasma Ang (1-7) at day 19. Celecoxib partially prevented the increase in blood pressure; this effect was associated with a reduction in plasma Ang II. These findings indicate that renal COX-2 expression increased in parallel with renin expression, renal PGI2 synthesis, and plasma Ang II in L-NAME-induced hypertension.


Assuntos
Ciclo-Oxigenase 2/metabolismo , Modelos Animais de Doenças , Regulação da Expressão Gênica , Hipertensão Renal/metabolismo , Córtex Renal/metabolismo , Renina/metabolismo , 6-Cetoprostaglandina F1 alfa/sangue , 6-Cetoprostaglandina F1 alfa/metabolismo , Angiotensina I/sangue , Angiotensina I/metabolismo , Angiotensina II/sangue , Angiotensina II/metabolismo , Animais , Anti-Hipertensivos/uso terapêutico , Captopril/uso terapêutico , Celecoxib/uso terapêutico , Ciclo-Oxigenase 2/química , Ciclo-Oxigenase 2/genética , Inibidores de Ciclo-Oxigenase 2/uso terapêutico , Regulação da Expressão Gênica/efeitos dos fármacos , Hipertensão Renal/sangue , Hipertensão Renal/prevenção & controle , Córtex Renal/efeitos dos fármacos , Córtex Renal/enzimologia , Masculino , NG-Nitroarginina Metil Éster , Óxido Nítrico/metabolismo , Fragmentos de Peptídeos/sangue , Fragmentos de Peptídeos/metabolismo , RNA Mensageiro/metabolismo , Distribuição Aleatória , Ratos Wistar , Renina/genética
8.
Gac Med Mex ; 151(5): 660-5, 2015.
Artigo em Espanhol | MEDLINE | ID: mdl-26526481

RESUMO

Since the end of the XVIII century, digitalis glycosides were employed in heart failure. They were considered initially as diuretics and later as cardiotonic agents or as positive inotropics. At the present time there are varied groups of positive inotropic agents, which have a beneficial action on the failing human myocardium. For example, the beta adrenergics, the phosphodiesterase III inhibitors such as milrinone, or the sensibilizers of myocardial proteins to Ca++ such as levosimendan and omecamtiv mecarbil. However, following the opinion of distinguished cardiologists, in the case of heart failure associated to atrial fibrillation, digitalis cannot be substituted.


Assuntos
Glicosídeos Digitálicos/história , Digitalis , Farmacologia/história , História do Século XVI , História do Século XVIII , História do Século XIX , Humanos , México
9.
Heliyon ; 9(11): e21230, 2023 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-38045135

RESUMO

Garlic (Allium sativum) possesses healing properties for diseases like systemic arterial hypertension, cancer and diabetes, among others. Its main component, allicin, binds to the Transient Receptor Potential Vanilloid Type 1 (TRPV1). In this study, we investigated TRPV1's involvement in the regulation of various molecules at the systemic and aortic levels in Wistar rats treated with bacterial lipopolysaccharide (LPS) and garlic to activate the receptor. The experimental groups were as follows: 1) Control, 2) LPS, 3) Garlic, and 4) LPS + Garlic. Using Uv-visible spectrophotometry and capillary zone electrophoresis, we measured the levels of nitric oxide (NO), biopterins BH2 and BH4, total antioxidant capacity (TAC) and oxidizing capacity (OXCA). We also analyzed molecules related to vascular homeostasis such as angiotensin Ang 1-7 and Ang II, as well as endothelin ET-1. In addition, we assessed the inflammatory response by determining the levels of interleukin-6 (IL-6), tumor necrosis factor alpha (TNFα), and galectin-3 (GTN-3). For cell damage assessment, we measured levels of malondialdehyde (MDA), malonate (MTO) and 8-hydroxy-2-deoxyguanosine (8HO2dG). The results showed that LPS influenced the NO pathway at both systemic and aortic levels by increasing OXCA and reducing TAC. It also disrupted vascular homeostasis by increasing Ang-II and ET-1, while decreasing Ang1-7 levels. IL-6, TNFα, GTN-3, as well as MDA, MTO, and 8HO2dG were significantly elevated compared to the control group. The expression of iNOS was increased, but TRPV1 remained unaffected by LPS. However, garlic treatment effectively mitigated the effects of LPS and significantly increased TRPV1 expression. Furthermore, LPS caused a significant decrease in calcitonin gene-related peptide (CGRP) in the aorta, which was counteracted by garlic treatment. Overall, TRPV1 appears to play a crucial role in regulating oxidative stress and the molecules involved in damage and inflammation induced by LPS. Thus, studying TRPV1, CGRP, and allicin may offer a potential strategy for mitigating inflammatory and oxidative stress in sepsis.

10.
J Cardiovasc Pharmacol ; 60(4): 323-34, 2012 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-22691880

RESUMO

Peroxisome proliferator-activated receptors (PPAR) play a critical physiological role in energy homeostasis, in inflammation, and a protective role in cardiovascular function. We assessed the antioxidant effect of clofibrate-induced Peroxisome proliferator-activated receptor alpha (PPARα) stimulation on ischemic myocardium on myocardial morphology and hemodynamics. Male Wistar rats (300 g) were distributed into the following groups: (1) Sham, (2) myocardial ischemia vehicle treated (MI-V), and (3) myocardial ischemia clofibrate [100 mg/kg/ intraperitoneally) treated (MI-C). Reactive oxygen species (ROS) and lipid peroxidation increased in MI-V, whereas clofibrate prevented this effect. Superoxide dismutase (SOD)-1 and SOD-2 expression increased 4 times upon PPARα stimulation. SOD-1, SOD-2, and catalase activity also increased in response to clofibrate. eNOS mRNA and tetrahydrobiopterin increased in the MI-C group. Clofibrate was able to decrease Angiotensin II (AngII), AngII AT1-receptor, whereas Ang-(1-7) and AngII AT2-receptor expression increased. Assessment of myocardial morphology and cardiac function show that clofibrate improved histological features and hemodynamic parameters. Our results suggest that PPARα stimulation by clofibrate increases the antioxidant defense, leading to improved cardiac function.


Assuntos
Antioxidantes/farmacologia , Clofibrato/farmacologia , Isquemia Miocárdica/tratamento farmacológico , PPAR alfa/efeitos dos fármacos , Animais , Antioxidantes/metabolismo , Catalase/metabolismo , Modelos Animais de Doenças , Hemodinâmica/efeitos dos fármacos , Peroxidação de Lipídeos/efeitos dos fármacos , Masculino , Isquemia Miocárdica/fisiopatologia , Estresse Oxidativo/efeitos dos fármacos , PPAR alfa/metabolismo , Ratos , Ratos Wistar , Espécies Reativas de Oxigênio/metabolismo , Superóxido Dismutase/metabolismo , Superóxido Dismutase-1
11.
Oxid Med Cell Longev ; 2021: 8531975, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34394835

RESUMO

The potential transient vanilloid receptor type 1 (TRPV1) plays important functional roles in the vascular system. In the present study, we explored the role of the TRPV1 in the production of nitric oxide (NO), biopterines (BH4 and BH2), cyclic guanosine monophosphate (cGMP), malondialdehyde (MDA), phosphodiesterase-3 (PDE-3), total antioxidant capacity (TAC), and calcitonin gene-related peptide (CGRP) in the rat aorta. Wistar rats were divided into four groups: (1) control, (2) capsaicin (CS, 20 mg/kg), (3) capsazepine (CZ, 24 mg/kg), and (4) CZ + CS. Treatments were applied daily for 4 days before removing the thoracic aortas for testing of aortic tissue and endothelial cells. TRPV1 activation produced increases in BH4 14%, cGMP 25%, NO 29%, and TAC 59.2% in comparison to the controls. BH2 and MDA increased with CZ. CGRP shows a tendency to decrease with CZ. The analysis by immunocytochemistry confirmed that the TRPV1 is present in aortic endothelial cells. Aortic endothelial cells were obtained from healthy rats and cultured to directly explore the effects of CS and CZ. The activation of the TRPV1 (CS 30 µM) produced increases in BH4 17%, NO 36.6%, TAC 56.3%, and CGRP 65%, when compared to controls. BH2 decreased with CZ + CS. CS effects were diminished by CZ in cells and in the tissue. We conclude that the TRPV1 is a structure present in the membrane of aortic endothelial cells and that it participates in the production of NO. The importance of the TRPV1 should be considered in vascular reactivity studies.


Assuntos
Aorta/metabolismo , Óxido Nítrico/metabolismo , Canais de Cátion TRPV/metabolismo , Animais , Aorta/efeitos dos fármacos , Biopterinas/análogos & derivados , Biopterinas/metabolismo , Capsaicina/análogos & derivados , Capsaicina/farmacologia , GMP Cíclico/metabolismo , Células Endoteliais/citologia , Células Endoteliais/efeitos dos fármacos , Células Endoteliais/metabolismo , Masculino , Malondialdeído/metabolismo , Óxido Nítrico Sintase Tipo III/genética , Óxido Nítrico Sintase Tipo III/metabolismo , Estresse Oxidativo/efeitos dos fármacos , Ratos , Ratos Wistar , Canais de Cátion TRPV/genética
12.
PPAR Res ; 2021: 8895376, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33505452

RESUMO

Lesions caused by high glucose (HG), hypoxia/reperfusion (H/R), and the coexistence of both conditions in cardiomyocytes are linked to an overproduction of reactive oxygen species (ROS), causing irreversible damage to macromolecules in the cardiomyocyte as well as its ultrastructure. Fenofibrate, a peroxisome proliferator-activated receptor alpha (PPARα) agonist, promotes beneficial activities counteracting cardiac injury. Therefore, the objective of this work was to determine the potential protective effect of fenofibrate in cardiomyocytes exposed to HG, H/R, and HG+H/R. Cardiomyocyte cultures were divided into four main groups: (1) control (CT), (2) HG (25 mM), (3) H/R, and (4) HG+H/R. Our results indicate that cell viability decreases in cardiomyocytes undergoing HG, H/R, and both conditions, while fenofibrate improves cell viability in every case. Fenofibrate also decreases ROS production as well as nicotinamide adenine dinucleotide phosphate oxidase (NADPH) subunit expression. Regarding the antioxidant defense, superoxide dismutase (SOD Cu2+/Zn2+ and SOD Mn2+), catalase, and the antioxidant capacity were decreased in HG, H/R, and HG+H/R-exposed cardiomyocytes, while fenofibrate increased those parameters. The expression of nuclear factor erythroid 2-related factor 2 (Nrf2) increased significantly in treated cells, while pathologies increased the expression of its inhibitor Keap1. Oxidative stress-induced mitochondrial damage was lower in fenofibrate-exposed cardiomyocytes. Endothelial nitric oxide synthase was also favored in cardiomyocytes treated with fenofibrate. Our results suggest that fenofibrate preserves the antioxidant status and the ultrastructure in cardiomyocytes undergoing HG, H/R, and HG+H/R preventing damage to essential macromolecules involved in the proper functioning of the cardiomyocyte.

13.
PPAR Res ; 2019: 1371758, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-30863432

RESUMO

Rosiglitazone (RGZ), a peroxisome proliferator-activated receptor gamma (PPARγ) ligand, has been reported to act as insulin sensitizer and exert cardiovascular actions. In this work, we hypothesized that RGZ exerts a PPARγ-dependent regulation of blood pressure through modulation of angiotensin-converting enzyme (ACE)-type 2 (ACE2)/angiotensin-(1-7)/angiotensin II type-2 receptor (AT2R) axis in an experimental model of high blood pressure. We carried on experiments in normotensive (Sham) and aortic coarctation (AoCo)-induced hypertensive male Wistar rats. Both sham and AoCo rats were treated 7 days with vehicle (V), RGZ (5 mg/kg/day), or RGZ+BADGE (120 mg/kg/day) post-coarctation. We measured blood pressure and vascular reactivity on aortic rings, as well as the expression of renin-angiotensin system (RAS) proteins. We found that RGZ treatment in AoCo group decreases blood pressure values and improves vascular response to acetylcholine, both parameters dependent on PPARγ-stimulation. RGZ lowered serum angiotensin II (AngII) but increased Ang-(1-7) levels. It also decreased 8-hydroxy-2'-deoxyguanosine (8-OH-2dG), malondialdehyde (MDA), and improved the antioxidant capacity. Regarding protein expression of RAS, RGZ decreases ACE and angiotensin II type 1 receptor (AT1R) and improved ACE2, AT2R, and Mas receptor in AoCo rats. Additionally, an in silico analysis revealed that 5'UTR regions of RAS and PPARγ share motifs with a transcriptional regulatory role. We conclude that RGZ lowers blood pressure values by increasing the expression of RAS axis proteins ACE2 and AT2R, decreasing the levels of AngII and increasing levels of Ang-(1-7) in a PPARγ-dependent manner. The in silico analysis is a valuable tool to predict the interaction between PPARγ and RAS.

14.
Artigo em Inglês | MEDLINE | ID: mdl-31557799

RESUMO

The purpose of the present study was to analyze the actions of transient receptor potential vanilloid type 1 (TRPV1) agonist capsaicin (CS) and of its antagonist capsazepine (CZ), on cardiac function as well as endothelial biomarkers and some parameters related with nitric oxide (NO) release in L-NG-nitroarginine methyl ester (L-NAME)-induced hypertensive rats. NO has been implicated in the pathophysiology of systemic arterial hypertension (SAHT). We analyzed the levels of nitric oxide (NO), tetrahydrobiopterin (BH4), malondialdehyde (MDA), total antioxidant capacity (TAC), cyclic guanosin monophosphate (cGMP), phosphodiesterase-3 (PDE-3), and the expression of endothelial nitric oxide synthase (eNOS), guanosine triphosphate cyclohydrolase 1 (GTPCH-1), protein kinase B (AKT), and TRPV1 in serum and cardiac tissue of normotensive (118±3 mmHg) and hypertensive (H) rats (165 ± 4 mmHg). Cardiac mechanical performance (CMP) was calculated and NO was quantified in the coronary effluent in the Langendorff isolated heart model. In hypertensive rats capsaicin increased the levels of NO, BH4, cGMP, and TAC, and reduced PDE-3 and MDA. Expressions of eNOS, GTPCH-1, and TRPV1 were increased, while AKT was decreased. Capsazepine diminished these effects. In the hypertensive heart, CMP improved with the CS treatment. In conclusion, the activation of TRPV1 in H rats may be an alternative mechanism for the improvement of cardiac function and systemic levels of biomarkers related to the bioavailability of NO.


Assuntos
Coração/efeitos dos fármacos , Hipertensão/metabolismo , Miocárdio/metabolismo , Óxido Nítrico/metabolismo , Canais de Cátion TRPV/metabolismo , Animais , Biomarcadores/sangue , Biopterinas/análogos & derivados , Biopterinas/metabolismo , Pressão Sanguínea , Capsaicina/análogos & derivados , Capsaicina/farmacologia , Capsaicina/uso terapêutico , Avaliação Pré-Clínica de Medicamentos , Hipertensão/tratamento farmacológico , Masculino , NG-Nitroarginina Metil Éster , Óxido Nítrico Sintase Tipo III , Estresse Oxidativo , Proteínas Proto-Oncogênicas c-akt , Ratos , Ratos Wistar , Canais de Cátion TRPV/agonistas , Canais de Cátion TRPV/antagonistas & inibidores , Resistência Vascular
15.
Arch Cardiol Mex ; 78(4): 379-83, 2008.
Artigo em Espanhol | MEDLINE | ID: mdl-19205545

RESUMO

PURPOSE: The endothelial function is the cornerstone of several cardiovascular disease. In this trial we compared how the Nitric Oxide (NO) and Oxidative Stress (OS) serum levels, as surrogate markers of endothelial function, change in patients who received (or not) rosuvastatin during the first seven days of an acute coronary syndrome (ACS). METHODS: Twenty-two patients with ACS (age:66 +/- 9 years, gender: ten female and 12 male) were randomized in two groups. Patients in the first group (G1) received the conventional treatment for an ACS, plus placebo. The other group (G2) additionally received a daily oral dose of 40 mg of rosuvastatin. We measured the blood levels of nitrates and OS in both groups twice: at baseline (admission to Intensive care unit) and seven days after. The statistical analysis was performed using the paired t-test or the Chi2 test depending of the variables. Statistical significance was considered with a p < 0.05. RESULTS: Groups (G1 and G2) differed statistically on age (G1=71 years +/- 10 vs. G2 63 +/- 9 years, p=0.04). After 7 days of the ACS onset, ON levels diminished on 21% (p=0.17) in G1, but raised on 24% in the group who re- ceived rosuvastatin (p=0.005), with statistically difference between groups (p=0.005). On the other hand, the OS, augmented statistically on both groups: G1 (17%, p<0.001) and G2 (13%, p<0.001), without any difference between groups (p=0.77). CONCLUSION: The endothelial dysfunction in the first days of an ACS is accentuated, but with the use of rosuvastatina, the endothelial function improves. In contrast, the OS increase in both groups, without differences between groups.


Assuntos
Síndrome Coronariana Aguda/tratamento farmacológico , Endotélio Vascular/efeitos dos fármacos , Fluorbenzenos/uso terapêutico , Inibidores de Hidroximetilglutaril-CoA Redutases/uso terapêutico , Óxido Nítrico/sangue , Estresse Oxidativo/efeitos dos fármacos , Pirimidinas/uso terapêutico , Sulfonamidas/uso terapêutico , Síndrome Coronariana Aguda/sangue , Idoso , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , Rosuvastatina Cálcica
16.
Z Naturforsch C J Biosci ; 62(9-10): 725-30, 2007.
Artigo em Inglês | MEDLINE | ID: mdl-18069247

RESUMO

Vulgarenol, a sesquiterpene isolated from Magnolia grandiflora flower petals, decreased coronary vascular resistance in the Langendorff isolated and perfused heart model, when compared to the control group [(15.2 x 10(7) +/- 1.0 x 10(7)) dyn s cm(-5) vs. (36.8 x 10(7) +/- 1.2 x 10(7)) dyn s cm(-5)]. Our data suggest that this coronary vasodilator effect probably involved inducible and endothelial nitric oxide synthase overexpression (6.8 and 4.2 times over control, respectively), which correlated with increases in nitric oxide release [(223 +/- 9) pmol mL(-1) vs. (61 +/- 11) pmol mL(-1)] and in cyclic guanosine monophosphate production [(142 +/- 8) pmol mg(-1) of tissue vs. (44 +/- 10) pmol mg(-1) of tissue], as compared to control values. This effect was antagonized by 3 microm gadolinium(III) chloride, 100 microM N-nitro-L-arginine methyl ester, and 10 microM 1H-[1,2,4]oxadiazolo[4,2-a]quinoxalin-1-one. Hence, the vulgarenol-elicited coronary vasodilator effect could be mediated by the nitric oxide-soluble guanylyl cyclase pathway.


Assuntos
Regulação Enzimológica da Expressão Gênica/efeitos dos fármacos , Magnolia/química , Miocárdio/enzimologia , Óxido Nítrico Sintase Tipo III/genética , Óxido Nítrico Sintase Tipo II/genética , Óxido Nítrico Sintase/genética , Sesquiterpenos/farmacologia , Animais , GMP Cíclico/metabolismo , Flores/química , Cobaias , Coração/efeitos dos fármacos , Óxido Nítrico/biossíntese , Sesquiterpenos/isolamento & purificação
17.
Arch Cardiol Mex ; 77 Suppl 4: S4-172-4, 2007.
Artigo em Espanhol | MEDLINE | ID: mdl-18938721

RESUMO

Inflammatory status is involved in the pathophysiology of several cardiovascular disorders and in the genesis of high blood pressure. In this disease inflammation results from the activity of several hematological cells as well as the presence of chemotactic factors, immunological reactivity and hyperactivity of vasoconstrictor systems as that of the renin-angiotensin. Clinical evaluation of hypertension recommends secreening of several proinflammatory substances in hypertensive patients in order to evaluate their level of cardiovascular risk. Interleukin-6 and C reactive protein have been considered the most usual risk biomarkers. Interleukin 6 is a potent proinflammatory compound which participates in the acute fase of the tissular reaction to lesions associated to immunological, ischemic or oxidative stress. C reactive protein participates during inflammation activating the first component of complement with disorganization of the phospholipidic array of the endothelial sarcolemmal membrane and the consequent endothelial dysfunction related to the genesis of high blood pressure.


Assuntos
Hipertensão/etiologia , Inflamação/complicações , Humanos , Interleucina-6/fisiologia
18.
Eur J Pharmacol ; 534(1-3): 71-6, 2006 Mar 18.
Artigo em Inglês | MEDLINE | ID: mdl-16507306

RESUMO

In the HeLa tumor cell line, we studied the characteristics of the dual effect of digitalis compounds on cell growth (proliferation and death). In addition, we explored whether both effects occur by means of the same mechanism. HeLa cell cultures were exposed to increasing concentrations (0.01 nM-10 microM) of ouabain, strophantidin, digoxin, and digoxigenin at 24-96 h intervals. Cell growth in treated cultures was compared with cell growth under nontreated conditions. Additionally, we studied changes in nuclear morphology, as well as in genomic DNA degradation, cytochrome c release, and caspase-9 and -3 presence and processing induced by toxic concentrations of digitalis. Digitalis compounds increased HeLa cell number when exposed to concentrations <10 nM during a 48 h period. Ethacrynic acid (a nonsteroid inhibitor for Na+/K+-ATPase) did not induce cell growth at these concentrations. Digitalis concentrations >10 nM induced cell death in a concentration- and exposure period-dependent fashion. Changes in nuclear morphology, DNA fragmentation, mitochondrial cytochrome c release, and proteolytic processing of caspases-9 and -3, suggest apoptotic cell death. The IC50 for the inducing effect of apoptosis by ouabain at 96 h was 18 nM and corresponds with the IC50 for the Na+/K+-ATPase inhibition in HeLa cells. In conclusion, the dual effect of digitalis compounds on HeLa cells growth is concentration and time-dependent. The apoptosis-inducing effect correlates with inhibition of Na+/K+-ATPase. Proliferation does not appear to be mediated through this pathway. The apoptosis-induction pathway is possibly cytochrome c-dependent.


Assuntos
Apoptose/efeitos dos fármacos , Cardiotônicos/farmacologia , Proliferação de Células/efeitos dos fármacos , Glicosídeos Digitálicos/farmacologia , Ouabaína/farmacologia , Citocromos c/metabolismo , Relação Dose-Resposta a Droga , Células HeLa , Humanos , Concentração Inibidora 50 , Mitocôndrias/efeitos dos fármacos , Mitocôndrias/enzimologia , Fatores de Tempo
19.
Arch Cardiol Mex ; 76 Suppl 4: S33-45, 2006.
Artigo em Espanhol | MEDLINE | ID: mdl-17469333

RESUMO

It has been suggested that dietary intake of flavonoids may reduce the risk of cardiovascular diseases. On the other hand, in vitro and in vivo studies shows that flavonoids has a vast array of biological activities. Our aim in this review is to put in evidence the effect of flavonoids on several enzymatic systems that could act as potential therapeutic targets, based on the reports of diverse research groups, leaders in the natural products research area, have published through the years, and with the goal of consolidating those results with the findings provided by some epidemiological studies, could support the introduction of these compounds into the clinic.


Assuntos
Antioxidantes/uso terapêutico , Doenças Cardiovasculares/prevenção & controle , Flavonoides/uso terapêutico , Fitoterapia , Inibidores da Agregação Plaquetária/uso terapêutico , Adulto , Idoso , Idoso de 80 Anos ou mais , Antioxidantes/administração & dosagem , Antioxidantes/farmacologia , Doenças Cardiovasculares/epidemiologia , Doenças Cardiovasculares/mortalidade , Ensaios Clínicos como Assunto , Enzimas/efeitos dos fármacos , Flavonoides/administração & dosagem , Flavonoides/química , Flavonoides/farmacologia , Humanos , Pessoa de Meia-Idade , Inibidores da Agregação Plaquetária/administração & dosagem , Inibidores da Agregação Plaquetária/farmacologia , Quercetina/administração & dosagem , Quercetina/uso terapêutico , Pesquisa , Fatores de Tempo
20.
Arch Cardiol Mex ; 76 Suppl 4: S76-101, 2006.
Artigo em Espanhol | MEDLINE | ID: mdl-17469337

RESUMO

After prolonged periods of ischemia and energy depletion, the ischemic myocardial cell can be jeopardized by specific causes within the reperfusion period. These causes can be viewed as unwanted aspects of the recovery process itself limiting its efficiency. Three potential initial causes of immediate reperfusion injury, aside from oxygen radicals, have been experimentally investigated in detail, and are briefly discussed: 1. re-energization; 2. rapid normalization of tissue pH; and 3. rapid normalization of tissue osmolality. These potential causes are not entirely independent. Understanding of the basic causes has opened novel perspectives for specific interference with these serious pathomechanisms. The experimental results obtained in the last years encourage the development of therapeutic approaches to reduce infarct size by specific measures applied during the early phase of reperfusion. In the clinical setting, reperfusion therapy for acute myocardial infarction (AMI) has shown to reduce mortality, yet it may also have deleterious effects, including myocardial necrosis and no-reflow. Almost two decades ago, great hope arose from the description of ischemic preconditioning. Unfortunately, ischemic preconditioning is not feasible in the clinical practice because the coronary artery is already occluded at the time of hospital admission of the AMI patient. Recently, in the dog model, a phenomenon called "postconditioning" has been described. It has been reported previouly that reperfusion injury can be significantly reduced by modifying the conditions and the composition of the initial reperfusate. Whereas preconditioning is triggered by brief episodes of ischemia-reperfusion performed just before a prolonged coronary artery occlusion, postconditioning is induced by a comparable sequence of reversible ischemia-reperfusion, but it is applied "just after the prolonged" ischemic insult. Protection afforded by postconditioning is as potent as that provided by preconditioning. Unlike preconditioning, the experimental design of postconditioning allows direct application in the clinical practice, especially during PTCA. It has been reported very recently, that postconditioning patients with ST segment elevation AMI, during coronary angioplasty protects the human heart in this clinical scenario. Obtaining such a beneficial effect by a simple manipulation of reperfusion is of major potential clinical interest. Now more than ever, mechanistic and pharmacological research in the field of reperfusion injury appears to be necessary and clinically relevant.


Assuntos
Eletrocardiografia , Infarto do Miocárdio/terapia , Traumatismo por Reperfusão Miocárdica/prevenção & controle , Reperfusão Miocárdica , Angioplastia Coronária com Balão , Animais , Apoptose/fisiologia , Circulação Colateral , Circulação Coronária , Modelos Animais de Doenças , Cães , Humanos , Precondicionamento Isquêmico Miocárdico , Infarto do Miocárdio/metabolismo , Infarto do Miocárdio/patologia , Traumatismo por Reperfusão Miocárdica/etiologia , Miocárdio/patologia , Necrose , Fosfatidilinositol 3-Quinases/metabolismo , Fatores de Risco , Fatores de Tempo
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa