Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
Crit Rev Clin Lab Sci ; 53(6): 379-95, 2016 12.
Artigo em Inglês | MEDLINE | ID: mdl-27191915

RESUMO

Extracellular vesicles (EVs) are released from almost all cells and tissues. They are able to transport substances (e.g. proteins, RNA or DNA) at higher concentrations than in their environment and may adhere in a receptor-controlled manner to specific cells or tissues in order to release their content into the respective target structure. Blood contains high concentrations of EVs mainly derived from platelets, and, at a smaller amount, from erythrocytes. The female and male reproductive tracts produce EVs which may be associated with fertility or infertility and are released into body fluids and mucosas of the urogenital organs. In this review, the currently relevant detection methods are presented and critically compared. During pregnancy, placenta-derived EVs are dynamically detectable in peripheral blood with changing profiles depending upon progress of pregnancy and different pregnancy-associated pathologies, such as preeclampsia. EVs offer novel non-invasive diagnostic tools which may reflect the situation of the placenta and the foetus. EVs in urine have the potential of reflecting urogenital diseases including cancers of the neighbouring organs. Several methods for detection, quantification and phenotyping of EVs have been established, which include electron microscopy, flow cytometry, ELISA-like methods, Western blotting and analyses based on Brownian motion. This review article summarises the current knowledge about EVs in blood and cord blood, in the different compartments of the male and female reproductive tracts, in trophoblast cells from normal and pre-eclamptic pregnancies, in placenta ex vivo perfusate, in the amniotic fluid, and in breast milk, as well as their potential effects on natural killer cells as possible targets.


Assuntos
Vesículas Extracelulares , Leite Humano/citologia , Sistema Urogenital/citologia , Células Sanguíneas/citologia , Feminino , Sangue Fetal/citologia , Humanos , Lactação , Masculino , Gravidez
2.
Placenta ; 111: 69-75, 2021 08.
Artigo em Inglês | MEDLINE | ID: mdl-34171523

RESUMO

Deficiency or mutation of von Willebrand factor (VWF) leads to a coagulation disorder (von Willebrand disease; VWD) which requires a lifelong therapy. For avoiding maternal complications treatment may be necessary also in pregnancy, but placental transfer to the fetus might impact its coagulation system and evoke undesired side effects. As VWF is a very large molecule it may be assumed that it does not pass the placental barrier. To prove this hypothesis the materno-fetal transfer of recombinant VWF (rVWF) has been analyzed ex vivo in a total of 21 valid dual side placenta perfusions. Three groups of five placentas each have been perfused with physiological and up to ten-fold increased concentrations of rVWF for 2 h. Six placentas have been used for control perfusions. A series of different control parameters has been assessed for documentation of intactness and functionality of the placenta and the perfusion system. In not a single analysis, independent of time and concentration, rVWF was detected in the fetal circuit. In the maternal circuit VWF concentration decreased slightly during perfusion. These results demonstrate that recombinant VWF does not pass the human placenta.


Assuntos
Troca Materno-Fetal , Placenta/metabolismo , Fator de von Willebrand/farmacocinética , Adulto , Feminino , Humanos , Técnicas In Vitro , Perfusão , Gravidez , Proteínas Recombinantes/farmacocinética , Adulto Jovem
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa