RESUMO
Wheat (Triticum aestivum L.) seedlings contain four alanine aminotransferase (AlaAT) homologues. Two of them encode AlaAT enzymes, whereas two homologues act as glumate:glyoxylate aminotransferase (GGAT). To address the function of the distinct AlaAT homologues a comparative examination of the changes in transcript level together with the enzyme activity and alanine and glutamate content in wheat seedlings subjected to low oxygen availability, nitrogen and light deficiency has been studied. Shoots of wheat seedlings were more tolerant to hypoxia than the roots as judging on the basis of enzyme activity and transcript level. Hypoxia induced AlaAT1 earlier in roots than in shoots, while AlaAT2 and GGAT were unaffected. The increase in AlaAT activity lagged behind the increase in alanine content. Nitrogen deficiency has little effect on the activity of GGAT. In contrast, lower activity of AlaAT and the level of mRNA for AlaAT1 and AlaAT2 in wheat seedlings growing on a nitrogen-free medium seems to indicate that AlaAT is regulated by the availability of nitrogen. Both AlaAT and GGAT activities were present in etiolated wheat seedlings but their activity was half of that observed in light-grown seedlings. Exposure of etiolated seedlings to light caused an increase in enzyme activities and up-regulated GGAT1. It is proposed that hypoxia-induced AlaAT1 and light-induced peroxisomal GGAT1 appears to be crucial for the regulation of energy availability in plants grown under unfavourable environmental conditions. Key message In young wheat seedlings, both AlaAT and GGAT are down-regulated by nitrogen deficiency, whereas AlaAT1 is upregulated by hypoxia and GGAT1 by light.
Assuntos
Alanina Transaminase/genética , Estresse Fisiológico/genética , Triticum/enzimologia , Triticum/fisiologia , Alanina/metabolismo , Alanina Transaminase/metabolismo , Anaerobiose/efeitos dos fármacos , Anaerobiose/genética , Anaerobiose/efeitos da radiação , Sequência de Bases , Cromatografia Líquida de Alta Pressão , Cromatografia de Fase Reversa , Eletroforese em Gel de Poliacrilamida , Regulação da Expressão Gênica de Plantas/efeitos dos fármacos , Regulação da Expressão Gênica de Plantas/efeitos da radiação , Ácido Glutâmico/metabolismo , Luz , Dados de Sequência Molecular , Nitrogênio/farmacologia , Filogenia , Raízes de Plantas/efeitos dos fármacos , Raízes de Plantas/enzimologia , Raízes de Plantas/genética , Raízes de Plantas/fisiologia , Brotos de Planta/efeitos dos fármacos , Brotos de Planta/enzimologia , Brotos de Planta/genética , Brotos de Planta/fisiologia , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Plântula/efeitos dos fármacos , Plântula/enzimologia , Plântula/genética , Plântula/efeitos da radiação , Homologia de Sequência do Ácido Nucleico , Estresse Fisiológico/efeitos dos fármacos , Estresse Fisiológico/efeitos da radiação , Transaminases/genética , Transaminases/metabolismo , Triticum/efeitos dos fármacos , Triticum/genéticaRESUMO
The photorespiratory enzyme L-serine:glyoxylate aminotransferase (SGAT; EC 2.6.1.45) was purified from Arabidopsis thaliana leaves. The final enzyme was approximately 80% pure as revealed by sodium dodecyl sulfate-polyacrylamide gel electrophoresis with silver staining. The identity of the enzyme was confirmed by LC/MS/MS analysis. The molecular mass estimated by gel filtration chromatography on Sephadex G-150 under non-denaturing conditions, mass spectrometry (matrix-assisted laser desorption/ionization/time of flight technique) and sodium dodecyl sulfate-polyacrylamide gel electrophoresis was 82.4 kDa, 42.0 kDa, and 39.8 kDa, respectively, indicating dimer as the active form. The optimum pH value was 9.2. The enzyme activity was inhibited by aminooxyacetate and beta-chloro-L-alanine both compounds reacting with the carbonyl group of pyridoxal phosphate. The enzyme's transaminating activity with L-alanine and glyoxylate as substrates was approximately 55% of that observed with L-serine and glyoxylate. The lower Km value (1.25 mM) for L-alanine, compared with that of other plant SGATs, and the kcat/Km(Ala) ratio being approximately 2-fold higher than kcat/Km(Ser) suggested that, during photorespiration, Ala and Ser are used by Arabidopsis SGAT with equal efficiency as amino group donors for glyoxylate. The equilibrium constant (Keq), derived from the Haldane relation, for the transamination reaction between L-serine and glyoxylate with the formation of hydroxypyruvate and glycine was 79.1, strongly favoring glycine synthesis. However, it was accompanied by a low Km value of 2.83 mM for glycine. A comparison of some kinetic properties of the studied enzymes with the recombinant Arabidopsis SGATs previously obtained revealed substantial differences. The ratio of the velocity of the transamination reaction with L-alanine and glyoxylate as substrates versus that with L-serine and glyoxylate was 1:1.8 for the native enzyme, whereas it was 1:7 for the recombinant SGAT. Native SGAT showed a much lower Km value for L-alanine compared to the recombinant enzyme.
Assuntos
Arabidopsis/enzimologia , Transaminases/química , Alanina/metabolismo , Arabidopsis/genética , Dimerização , Concentração de Íons de Hidrogênio , Interações Hidrofóbicas e Hidrofílicas , Cinética , Peso Molecular , Folhas de Planta/enzimologia , Estrutura Secundária de Proteína , Proteínas Recombinantes/química , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , Serina/metabolismo , Especificidade por Substrato , Espectrometria de Massas em Tandem , Transaminases/genética , Transaminases/isolamento & purificação , Transaminases/metabolismoRESUMO
Chromosomal localization of the three homoeologous genes encoding cytosolic aspartate aminotransferase in common wheat (Triticum aestivum cv. Chinese Spring, 2n = 6x = 42, AABBDD) was specified to: 3AL (0.42÷0.61), 3BL (0.38÷0.41) and 3DL (0.23÷0.81) by a comparative zymographic analysis of the enzymatic activities in deletion lines. It was also attempted to precisely explain the nature of the relationship between a number of genes encoding α and ß subunits and a distribution of staining intensity of cytosolic aspartate aminotransferase allozyme activity bands using aneuploid lines of common wheat with modified third pair of homoeologous chromosomes from genomes A, B and D, on which the genes encoding subunit α (genome A) and ß (genome B and D) are localized. The highest consistency between the experimental results and the theoretical distributions was achieved by substituting values of α = 0.57 and ß = 0.43 in a theoretical model. These results demonstrate that the individual participation of the diploid genome A in the biosynthesis of the cytosolic aspartate aminotransferase allozymes subunits is greater than the individual participation of the diploid genomes B and D.
RESUMO
Photorespiratory enzyme serine:glyoxylate aminotransferase (SGAT, EC 2.6.1.45) was purified from green parts of seedlings of two Gramminae species with different photosynthetic pathways, maize (Zea mays L., C(4) species) and wheat (Triticum aestivum L., C(3) species). The preparation from wheat was homogeneous as judged by SDS-PAGE with silver staining for proteins; however, the same method revealed approximately 9% contamination in a highly purified maize preparation. Molecular masses of SGAT from maize and wheat were estimated by SDS-PAGE to be 44.1 and 44.6 kDa, respectively. C(4) enzyme exhibited a specific activity in homogenates that was seven times lower than wheat, and this was associated with lower K (m) values for all substrates examined as well as a more than two times lower turnover number k (cat) with serine and glyoxylate as a pair of substrates. In contrast, the ratio of the turnover number to K (m)(Ser)(k (cat)/K (m)(Ser)) for C(4) aminotransferase proved to be about two times higher than for C(3) aminotransferase. The sensitivity of two enzymes to some inhibitors, especially aminooxyacetate, was different and they also differed with respect to thermal stability and pH optimum - the maize enzyme required 0.6 unit higher pH (8.6) for maximal activity and was more heat-resistant.
RESUMO
Zymograms of the aspartate aminotransferase (AAT, EC 2.6.1.1) activity in leaf extracts from Aegilops and Triticum species revealed three AAT zones, denoted according to the decreasing electrophoretic mobility towards the anode as AAT-1, AAT-2 and AAT-3. The AAT activity zymograms of subcellular fractions isolated from T. aestivum seedlings made it possible to establish that the AAT-1 zone is located in the mitochondria, AAT-2 in the chloroplasts and AAT-3 in the cytoplasm. Most of the total AAT activity from wheat leaves arises from the chloroplasts and cytoplasm. The AAT-3 zone exhibited the lowest electrophoretic mobility, but 3 isoenzymes occurring within were the most visibly separated. The occurrence of a single band in this zone at the AAT-3a position (closest to the anode) for the aneuploid CS3ASDt AABBDD line (the absence of long arms of the 3rd pair of homologous chromosomes in the A genome) and at the AAT-3c position for Ae. umbellulata (genome UU), as well as three bands in the whole zone for T. durum (AABB) and T. aestivum (AABBDD) each, made it possible to evaluate the subunit composition of isoenzymes in the AAT-3 zone. The band at the AAT-3a position in the zymogram is formed from bb dimers, AAT-3b from ab and AAT-3c from aa. By comparing the distribution of isoenzyme bands intensities (the result of enzymatic activity) with the mathematical models, the frequencies of the occurrence of the a and b subunits within AAT-3 zone were evaluated. In AAT-3 from T. durum, a and b occurred at the ratio of 0.54:0.46, and in that from T. aestivum - 0.62:0.38, respectively.
Assuntos
Aspartato Aminotransferases/genética , Poaceae/genética , Triticum/genética , Cloroplastos/enzimologia , Cloroplastos/genética , Citoplasma/enzimologia , Citoplasma/genética , Genoma de Planta , Isoenzimas , Mitocôndrias/enzimologia , Mitocôndrias/genética , Poaceae/enzimologia , Plântula/enzimologia , Plântula/genética , Frações Subcelulares , Triticum/enzimologiaRESUMO
Four homologues of alanine aminotransferase have been isolated from shoots of wheat seedlings and purified by saline precipitation, gel filtration, preparative electrophoresis and anion exchange chromatography on Protein-Pak Q 8HR column attached to HPLC. Alanine aminotransferase 1 (AlaAT1) and 2 (AlaAT2) were purified 303- and 452-fold, respectively, whereas l-glutamate: glyoxylate aminotransferase 1 (GGAT1) and 2 (GGAT2) were purified 485- and 440-fold, respectively. Consistent inhibition of AlaAT (EC 2.6.1.2) and GGAT (EC 2.6.1.4) activities by p-hydroxymercuribenzoate points on participation of cysteine residues in the enzyme activity. The molecular weight of AlaAT1 and AlaAT2 was estimated to be 65kDa and both of them are monomers in native state. Nonsignificant differences between K(m) using alanine as substrate and catalytic efficiency (k(cat)/K(m)) for l-alanine in reaction with 2-oxoglutarate indicate comparable kinetic constants for AlaAT1 and AlaAT2. Similar kinetic constants for l-alanine in reaction with 2-oxoglutarate and for l-glutamate in reaction with pyruvate for all four homologues suggest equally efficient reaction in both forward and reverse directions. GGAT1 and GGAT2 were able to catalyze transamination between l-glutamate and glyoxylate, l-alanine and glyoxylate and reverse reactions between glycine and 2-oxoglutarate or pyruvate. Both GGATs also consisted of a single subunit with molecular weight of about 50kDa. The estimated K(m) for GGAT1 (3.22M) and GGAT2 (1.27M) using l-glutamate as substrate was lower in transamination with glyoxylate than with pyruvate (9.52 and 9.09mM, respectively). Moreover, distinctively higher values of catalytic efficiency for l-glutamate in reaction with glyoxylate than for l-glutamate in reaction with pyruvate confirm involvement of these homologues into photorespiratory metabolism.
Assuntos
Alanina Transaminase/química , Alanina Transaminase/metabolismo , Homologia de Sequência de Aminoácidos , Triticum/enzimologia , Alanina Transaminase/isolamento & purificação , Cinética , Plântula/enzimologiaRESUMO
The structural properties of photorespiratory serine:glyoxylate aminotransferases (SGAT, EC 2.6.1.45) from maize (Zea mays L.) and wheat (Triticum aestivum L.) leaves were examined. By means of molecular sieving on Zorbax SE-250 column and filtration through centrifugal filters it was shown that dimers of wheat enzyme (molecular mass of about 90 kDa) dissociate into component monomers (molecular mass of about 45 kDa) upon decrease in pH value (from 9.1 or 7.0 to 6.5). At pH 9.1 a 50-fold decrease of ionic strength elicited a similar effect. Under the same conditions homodimers of the maize enzyme (molecular mass similar to that of the wheat enzyme) remained stable. Immunoblot analysis with polyclonal antiserum against wheat seedling SGAT on leaf homogenates or highly purified preparations of both enzymes showed that the immunogenic portions of the wheat enzyme are divergent from those of the maize enzyme. The sequence of 136 amino acids of the maize enzyme and 78 amino acids of the wheat enzyme was established by tandem mass spectrometry with time of flight analyzer. The two enzymes likely share similarity in tertiary and quaternary structures as well as high level of hydrophobicity on their molecular surfaces. They likely differ in the mechanism of transport from the site of biosynthesis to peroxisomes as well as in some aspects of secondary structure.