Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
Appl Environ Microbiol ; 90(7): e0031024, 2024 Jul 24.
Artigo em Inglês | MEDLINE | ID: mdl-38934615

RESUMO

Integration of metabolites into the overall metabolic network of a cell requires careful coordination dependent upon the ultimate usage of the metabolite. Different stoichiometric needs, and thus pathway fluxes, must exist for compounds destined for diverse uses, such as carbon sources, nitrogen sources, or stress-protective agents. Herein, we expand upon our previous work that highlighted the nature of glycine betaine (GB) metabolism in Methylobacteria to examine the utilization of GB-derivative compounds dimethylglycine (DMG) and sarcosine into Methylorubrum extorquens in different metabolic capacities, including as sole nitrogen and/or carbon sources. We isolated gain-of-function mutations that allowed M. extorquens PA1 to utilize dimethylglycine as a carbon source and dimethylglycine and sarcosine as nitrogen source. Characterization of mutants demonstrated selection for variants of the AraC-like regulator Mext_3735 that confer constitutive expression of the GB metabolic gene cluster, allowing direct utilization of the downstream GB derivatives. Finally, among the distinct isolates examined, we found that catabolism of the osmoprotectant used for selection (GB or dimethylglycine) enhanced osmotic stress resistance provided in the presence of that particular osmolyte. Thus, access to the carbon and nitrogen and osmoprotective effects of GB and DMG are made readily accessible through adaptive mutations. In M. extorquens PA1, the limitations to exploiting this group of compounds appear to exist predominantly at the levels of gene regulation and functional activity, rather than being constrained by transport or toxicity.IMPORTANCEOsmotic stress is a common challenge for bacteria colonizing the phyllosphere, where glycine betaine (GB) can be found as a prevalent osmoprotectant. Though Methylorubrum extorquens PA1 cannot use GB or its demethylation products, dimethylglycine (DMG) and sarcosine, as a sole carbon source, utilization is highly selectable via single nucleotide changes for both GB and DMG growth. The innate inability to use these compounds is due to limited flux through steps in the pathway and regulatory constraints. Herein, the characterization of the transcriptional regulator, Mext_3735 (GbdR), expands our understanding of the various roles in which GB derivatives can be used in M. extorquens PA1. Interestingly, increased catabolism of GB and derivatives does not interfere with, but rather improves, the ability of cells to thrive under increased salt stress conditions, suggesting that metabolic flux improves stress tolerance rather than providing a distinct tension between uses.


Assuntos
Betaína , Pressão Osmótica , Sarcosina , Betaína/metabolismo , Sarcosina/análogos & derivados , Sarcosina/metabolismo , Methylobacterium extorquens/metabolismo , Methylobacterium extorquens/genética , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Carbono/metabolismo
2.
bioRxiv ; 2024 May 22.
Artigo em Inglês | MEDLINE | ID: mdl-38826284

RESUMO

Antibody escape mutations pose a significant challenge to the effectiveness of vaccines and antibody-based therapies. The ability to predict these escape mutations with computer simulations would allow us to detect threats early and develop effective countermeasures, but a lack of large-scale experimental data has hampered the validation of these calculations. In this study, we evaluate the ability of the MD+FoldX molecular modeling method to predict escape mutations by leveraging a large deep mutational scanning dataset, focusing on the SARS-CoV-2 receptor binding domain. Our results show a positive correlation between predicted and experimental data, indicating that mutations with reduced predicted binding affinity correlate moderately with higher experimental escape fractions. We also demonstrate that better performance can be achieved using affinity cutoffs tailored to distinct antibody-antigen interactions rather than a one-size-fits-all approach. We find that 70% of the systems surpass the 50% precision mark, and demonstrate success in identifying mutations present in significant variants of concern and variants of interest. Despite promising results for some systems, our study highlights the challenges in comparing predicted and experimental values. It also emphasizes the need for new binding affinity methods with improved accuracy that are fast enough to estimate hundreds to thousands of antibody-antigen binding affinities.

3.
Nutrients ; 16(13)2024 Jun 27.
Artigo em Inglês | MEDLINE | ID: mdl-38999788

RESUMO

Human milk reduces risk for necrotizing enterocolitis in preterm infants. Necrotizing enterocolitis occurs in the ileocecal region where thousands of milk protein-derived peptides have been released from digestion. Digestion-released peptides may exert bioactivity, such as antimicrobial and immunomodulatory activities, in the gut. In this study, we applied mass spectrometry-based peptidomics to characterize peptides present in colostrum before and after in vitro digestion. Sequence-based computational modeling was applied to predict peptides with antimicrobial activity. We identified more peptides in undigested samples, yet the abundances were much higher in the digested samples. Heatmapping demonstrated highly different peptide profiles between undigested and digested samples. Four peptides (αS1-casein [157-163], αS1-casein [157-165], ß-casein [153-159] and plasminogen [591-597]) were selected, synthesized and tested against common pathogenic bacteria associated with necrotizing enterocolitis. All four exhibited bacteriostatic, though not bactericidal, activities against Klebsiella aerogenes, Citrobacter freundii and Serratia marcescens, but not Escherichia coli.


Assuntos
Colostro , Enterocolite Necrosante , Leite Humano , Humanos , Colostro/química , Recém-Nascido , Enterocolite Necrosante/prevenção & controle , Leite Humano/química , Peptídeos Antimicrobianos/farmacologia , Peptídeos/farmacologia , Feminino , Caseínas/farmacologia , Antibacterianos/farmacologia , Digestão , Proteínas do Leite/farmacologia
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa