RESUMO
The survival of an organism is dependent on its ability to respond to cues in the environment. Such cues can attain control over behavior as a function of the value ascribed to them. Some individuals have an inherent tendency to attribute reward-paired cues with incentive motivational value, or incentive salience. For these individuals, termed sign-trackers, a discrete cue that precedes reward delivery becomes attractive and desirable in its own right. Prior work suggests that the behavior of sign-trackers is dopamine-dependent, and cue-elicited dopamine in the NAc is believed to encode the incentive value of reward cues. Here we exploited the temporal resolution of optogenetics to determine whether selective inhibition of ventral tegmental area (VTA) dopamine neurons during cue presentation attenuates the propensity to sign-track. Using male tyrosine hydroxylase (TH)-Cre Long Evans rats, it was found that, under baseline conditions, â¼84% of TH-Cre rats tend to sign-track. Laser-induced inhibition of VTA dopamine neurons during cue presentation prevented the development of sign-tracking behavior, without affecting goal-tracking behavior. When laser inhibition was terminated, these same rats developed a sign-tracking response. Video analysis using DeepLabCutTM revealed that, relative to rats that received laser inhibition, rats in the control group spent more time near the location of the reward cue even when it was not present and were more likely to orient toward and approach the cue during its presentation. These findings demonstrate that cue-elicited dopamine release is critical for the attribution of incentive salience to reward cues.SIGNIFICANCE STATEMENT Activity of dopamine neurons in the ventral tegmental area (VTA) during cue presentation is necessary for the development of a sign-tracking, but not a goal-tracking, conditioned response in a Pavlovian task. We capitalized on the temporal precision of optogenetics to pair cue presentation with inhibition of VTA dopamine neurons. A detailed behavioral analysis with DeepLabCutTM revealed that cue-directed behaviors do not emerge without dopamine neuron activity in the VTA. Importantly, however, when optogenetic inhibition is lifted, cue-directed behaviors increase, and a sign-tracking response develops. These findings confirm the necessity of dopamine neuron activity in the VTA during cue presentation to encode the incentive value of reward cues.
Assuntos
Sinais (Psicologia) , Motivação , Ratos , Masculino , Animais , Neurônios Dopaminérgicos , Ratos Sprague-Dawley , Dopamina , Ratos Long-Evans , RecompensaRESUMO
The survival of an organism is dependent on their ability to respond to cues in the environment. Such cues can attain control over behavior as a function of the value ascribed to them. Some individuals have an inherent tendency to attribute reward-paired cues with incentive motivational value, or incentive salience. For these individuals, termed sign-trackers, a discrete cue that precedes reward delivery becomes attractive and desirable in its own right. Prior work suggests that the behavior of sign-trackers is dopamine-dependent, and cue-elicited dopamine in the nucleus accumbens is believed to encode the incentive value of reward cues. Here we exploited the temporal resolution of optogenetics to determine whether selective inhibition of ventral tegmental area (VTA) dopamine neurons during cue presentation attenuates the propensity to sign-track. Using male tyrosine hydroxylase (TH)-Cre Long Evans rats it was found that, under baseline conditions, â¼84% of TH-Cre rats tend to sign-track. Laser-induced inhibition of VTA dopamine neurons during cue presentation prevented the development of sign-tracking behavior, without affecting goal-tracking behavior. When laser inhibition was terminated, these same rats developed a sign-tracking response. Video analysis using DeepLabCut revealed that, relative to rats that received laser inhibition, rats in the control group spent more time near the location of the reward cue even when it was not present and were more likely to orient towards and approach the cue during its presentation. These findings demonstrate that cue-elicited dopamine release is critical for the attribution of incentive salience to reward cues. Significance Statement: Activity of dopamine neurons in the ventral tegmental area (VTA) during cue presentation is necessary for the development of a sign-tracking, but not a goal-tracking, conditioned response in a Pavlovian task. We capitalized on the temporal precision of optogenetics to pair cue presentation with inhibition of VTA dopamine neurons. A detailed behavioral analysis with DeepLabCut revealed that cue-directed behaviors do not emerge without VTA dopamine. Importantly, however, when optogenetic inhibition is lifted, cue-directed behaviors increase, and a sign-tracking response develops. These findings confirm the necessity of VTA dopamine during cue presentation to encode the incentive value of reward cues.
RESUMO
A 60-year-old man with prostatic adenocarcinoma and a synchronous tubulovillous adenomatous polyp of the colon underwent a successful robotic radical prostatectomy combined with a laparoscopic right hemicolectomy. We describe the initial report of this combined, minimally invasive procedure involving separate organ systems and surgical disciplines, and describe our technique.
Assuntos
Adenocarcinoma/cirurgia , Colectomia/métodos , Pólipos do Colo/cirurgia , Laparoscopia/métodos , Prostatectomia/métodos , Neoplasias da Próstata/cirurgia , Robótica/métodos , Humanos , Masculino , Pessoa de Meia-IdadeRESUMO
Rhabdomyosarcoma (RMS) is an aggressive pediatric soft tissue sarcoma. There are two main subtypes of RMS, alveolar rhabdomyosarcoma (ARMS) and embryonal rhabdomyosarcoma. ARMS typically encompasses fusion-positive rhabdomyosarcoma, which expresses either PAX3-FOXO1 or PAX7-FOXO1 fusion proteins. There are no targeted therapies for ARMS; however, recent studies have begun to illustrate the cooperation between epigenetic proteins and the PAX3-FOXO1 fusion, indicating that epigenetic proteins may serve as targets in ARMS. Here, we investigate the contribution of BMI1, given the established role of this epigenetic regulator in sustaining aggression in cancer. We determined that BMI1 is expressed across ARMS tumors, patient-derived xenografts, and cell lines. We depleted BMI1 using RNAi and inhibitors (PTC-209 and PTC-028) and found that this leads to a decrease in cell growth/increase in apoptosis in vitro, and delays tumor growth in vivo. Our data suggest that BMI1 inhibition activates the Hippo pathway via phosphorylation of LATS1/2 and subsequent reduction in YAP levels and YAP/TAZ target genes. These results identify BMI1 as a potential therapeutic vulnerability in ARMS and warrant further investigation of BMI1 in ARMS and other sarcomas.