RESUMO
With progressive climate change and the associated increase in mean temperature, heat stress tolerance has emerged as one of the key traits in the product profile of the maize breeding pipeline for lowland tropics. The present study aims to identify the genomic regions associated with heat stress tolerance in tropical maize. An association mapping panel, called the heat tolerant association mapping (HTAM) panel, was constituted by involving a total of 543 tropical maize inbred lines from diverse genetic backgrounds, test-crossed and phenotyped across nine locations in South Asia under natural heat stress. The panel was genotyped using a genotyping-by-sequencing (GBS) platform. Considering the large variations in vapor pressure deficit (VPD) at high temperature (Tmax) across different phenotyping locations, genome-wide association study (GWAS) was conducted separately for each location. The individual location GWAS identified a total of 269 novel significant single nucleotide polymorphisms (SNPs) for grain yield under heat stress at a p value of < 10-5. A total of 175 SNPs were found in 140 unique gene models implicated in various biological pathway responses to different abiotic stresses. Haplotype trend regression (HTR) analysis of the significant SNPs identified 26 haplotype blocks and 96 single SNP variants significant across one to five locations. The genomic regions identified based on GWAS and HTR analysis considering genomic region x environment interactions are useful for breeding efforts aimed at developing heat stress resilient maize cultivars for current and future climatic conditions through marker-assisted introgression into elite genetic backgrounds and/or genome-wide selection.
Assuntos
Genoma de Planta , Termotolerância/genética , Zea mays/genética , Alelos , Estudo de Associação Genômica Ampla , Haplótipos , Clima TropicalRESUMO
Papaya ringspot virus (PRSV) is one of the most devastating viruses which causes huge damage to papaya plantations across the globe. PRSV is a positive sense RNA virus encoding for a polyprotein that is processed into ten proteins. In this study for the first time we analyzed the variability for 15 PRSV isolates from a selected geographical region of a South Indian state Karnataka, which is under intensive papaya cultivation. Variability studies were done for two genes at the 5' end of the viral genome, namely P1 and helper component proteinase (Hc-Pro) and towards the 3' end, a 788 nt overlapping region of nuclear inclusion B (NIb, 692 nt) and of capsid protein (CP, 96 nt), referred as NIb-CP. Our studies indicate that the P1 is most variable region with a wider range of sequence identity, followed by Hc-Pro, while the 788 nt of NIb-CP was most conserved. P1 also showed maximum recombination events followed by Hc-Pro, whereas NIb-CP did not show any recombination. Further, the pattern and number of phylogenetic clusters was variable for each of the three genomic regions of PRSV isolates. Estimation of selection pressure for all the three PRSV genomic regions indicated negative and purifying selection.