Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 3.727
Filtrar
Mais filtros

Intervalo de ano de publicação
1.
Nat Immunol ; 25(6): 1073-1082, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38816615

RESUMO

A key barrier to the development of vaccines that induce broadly neutralizing antibodies (bnAbs) against human immunodeficiency virus (HIV) and other viruses of high antigenic diversity is the design of priming immunogens that induce rare bnAb-precursor B cells. The high neutralization breadth of the HIV bnAb 10E8 makes elicitation of 10E8-class bnAbs desirable; however, the recessed epitope within gp41 makes envelope trimers poor priming immunogens and requires that 10E8-class bnAbs possess a long heavy chain complementarity determining region 3 (HCDR3) with a specific binding motif. We developed germline-targeting epitope scaffolds with affinity for 10E8-class precursors and engineered nanoparticles for multivalent display. Scaffolds exhibited epitope structural mimicry and bound bnAb-precursor human naive B cells in ex vivo screens, protein nanoparticles induced bnAb-precursor responses in stringent mouse models and rhesus macaques, and mRNA-encoded nanoparticles triggered similar responses in mice. Thus, germline-targeting epitope scaffold nanoparticles can elicit rare bnAb-precursor B cells with predefined binding specificities and HCDR3 features.


Assuntos
Vacinas contra a AIDS , Anticorpos Neutralizantes , Anticorpos Anti-HIV , Proteína gp41 do Envelope de HIV , Infecções por HIV , HIV-1 , Macaca mulatta , Animais , Humanos , Proteína gp41 do Envelope de HIV/imunologia , Anticorpos Anti-HIV/imunologia , Camundongos , Vacinas contra a AIDS/imunologia , Anticorpos Neutralizantes/imunologia , HIV-1/imunologia , Infecções por HIV/imunologia , Infecções por HIV/prevenção & controle , Infecções por HIV/virologia , Vacinação , Anticorpos Amplamente Neutralizantes/imunologia , Linfócitos B/imunologia , Nanopartículas/química , Feminino , Regiões Determinantes de Complementaridade/imunologia , Epitopos/imunologia
2.
Cell ; 181(4): 763-773.e12, 2020 05 14.
Artigo em Inglês | MEDLINE | ID: mdl-32330415

RESUMO

Paralyzed muscles can be reanimated following spinal cord injury (SCI) using a brain-computer interface (BCI) to enhance motor function alone. Importantly, the sense of touch is a key component of motor function. Here, we demonstrate that a human participant with a clinically complete SCI can use a BCI to simultaneously reanimate both motor function and the sense of touch, leveraging residual touch signaling from his own hand. In the primary motor cortex (M1), residual subperceptual hand touch signals are simultaneously demultiplexed from ongoing efferent motor intention, enabling intracortically controlled closed-loop sensory feedback. Using the closed-loop demultiplexing BCI almost fully restored the ability to detect object touch and significantly improved several sensorimotor functions. Afferent grip-intensity levels are also decoded from M1, enabling grip reanimation regulated by touch signaling. These results demonstrate that subperceptual neural signals can be decoded from the cortex and transformed into conscious perception, significantly augmenting function.


Assuntos
Retroalimentação Sensorial/fisiologia , Percepção do Tato/fisiologia , Tato/fisiologia , Adulto , Interfaces Cérebro-Computador/psicologia , Mãos/fisiopatologia , Força da Mão/fisiologia , Humanos , Masculino , Córtex Motor/fisiologia , Movimento/fisiologia , Traumatismos da Medula Espinal/fisiopatologia
3.
Cell ; 180(5): 915-927.e16, 2020 03 05.
Artigo em Inglês | MEDLINE | ID: mdl-32084333

RESUMO

The dichotomous model of "drivers" and "passengers" in cancer posits that only a few mutations in a tumor strongly affect its progression, with the remaining ones being inconsequential. Here, we leveraged the comprehensive variant dataset from the ICGC/TCGA Pan-Cancer Analysis of Whole Genomes (PCAWG) project to demonstrate that-in addition to the dichotomy of high- and low-impact variants-there is a third group of medium-impact putative passengers. Moreover, we also found that molecular impact correlates with subclonal architecture (i.e., early versus late mutations), and different signatures encode for mutations with divergent impact. Furthermore, we adapted an additive-effects model from complex-trait studies to show that the aggregated effect of putative passengers, including undetected weak drivers, provides significant additional power (∼12% additive variance) for predicting cancerous phenotypes, beyond PCAWG-identified driver mutations. Finally, this framework allowed us to estimate the frequency of potential weak-driver mutations in PCAWG samples lacking any well-characterized driver alterations.


Assuntos
Genoma Humano/genética , Genômica/métodos , Mutação/genética , Neoplasias/genética , Análise Mutacional de DNA/métodos , Progressão da Doença , Humanos , Neoplasias/patologia , Sequenciamento Completo do Genoma
4.
Cell ; 173(3): 665-676.e14, 2018 04 19.
Artigo em Inglês | MEDLINE | ID: mdl-29551272

RESUMO

Class 2 CRISPR-Cas systems endow microbes with diverse mechanisms for adaptive immunity. Here, we analyzed prokaryotic genome and metagenome sequences to identify an uncharacterized family of RNA-guided, RNA-targeting CRISPR systems that we classify as type VI-D. Biochemical characterization and protein engineering of seven distinct orthologs generated a ribonuclease effector derived from Ruminococcus flavefaciens XPD3002 (CasRx) with robust activity in human cells. CasRx-mediated knockdown exhibits high efficiency and specificity relative to RNA interference across diverse endogenous transcripts. As one of the most compact single-effector Cas enzymes, CasRx can also be flexibly packaged into adeno-associated virus. We target virally encoded, catalytically inactive CasRx to cis elements of pre-mRNA to manipulate alternative splicing, alleviating dysregulated tau isoform ratios in a neuronal model of frontotemporal dementia. Our results present CasRx as a programmable RNA-binding module for efficient targeting of cellular RNA, enabling a general platform for transcriptome engineering and future therapeutic development.


Assuntos
Sistemas CRISPR-Cas , Biologia Computacional/métodos , Engenharia Genética/métodos , Engenharia de Proteínas/métodos , RNA/análise , Processamento Alternativo , Animais , Proteínas de Bactérias/metabolismo , Diferenciação Celular , Escherichia coli/metabolismo , Perfilação da Expressão Gênica , Células HEK293 , Humanos , Células-Tronco Pluripotentes Induzidas/citologia , Lentivirus/genética , Camundongos , Interferência de RNA , RNA Guia de Cinetoplastídeos/genética , Ruminococcus , Análise de Sequência de RNA , Transcriptoma
5.
Cell ; 175(1): 212-223.e17, 2018 09 20.
Artigo em Inglês | MEDLINE | ID: mdl-30241607

RESUMO

CRISPR-Cas endonucleases directed against foreign nucleic acids mediate prokaryotic adaptive immunity and have been tailored for broad genetic engineering applications. Type VI-D CRISPR systems contain the smallest known family of single effector Cas enzymes, and their signature Cas13d ribonuclease employs guide RNAs to cleave matching target RNAs. To understand the molecular basis for Cas13d function and explain its compact molecular architecture, we resolved cryoelectron microscopy structures of Cas13d-guide RNA binary complex and Cas13d-guide-target RNA ternary complex to 3.4 and 3.3 Å resolution, respectively. Furthermore, a 6.5 Å reconstruction of apo Cas13d combined with hydrogen-deuterium exchange revealed conformational dynamics that have implications for RNA scanning. These structures, together with biochemical and cellular characterization, provide insights into its RNA-guided, RNA-targeting mechanism and delineate a blueprint for the rational design of improved transcriptome engineering technologies.


Assuntos
Sistemas CRISPR-Cas/genética , RNA Guia de Cinetoplastídeos/fisiologia , Ribonucleases/fisiologia , Sistemas CRISPR-Cas/fisiologia , Repetições Palindrômicas Curtas Agrupadas e Regularmente Espaçadas/genética , Microscopia Crioeletrônica/métodos , Endonucleases/metabolismo , Células HEK293 , Humanos , Conformação Molecular , RNA/genética , RNA Guia de Cinetoplastídeos/genética , RNA Guia de Cinetoplastídeos/ultraestrutura , Ribonucleases/metabolismo , Ribonucleases/ultraestrutura
7.
Cell ; 164(5): 950-61, 2016 Feb 25.
Artigo em Inglês | MEDLINE | ID: mdl-26875867

RESUMO

The RNA-guided endonuclease Cas9 cleaves double-stranded DNA targets complementary to the guide RNA and has been applied to programmable genome editing. Cas9-mediated cleavage requires a protospacer adjacent motif (PAM) juxtaposed with the DNA target sequence, thus constricting the range of targetable sites. Here, we report the 1.7 Å resolution crystal structures of Cas9 from Francisella novicida (FnCas9), one of the largest Cas9 orthologs, in complex with a guide RNA and its PAM-containing DNA targets. A structural comparison of FnCas9 with other Cas9 orthologs revealed striking conserved and divergent features among distantly related CRISPR-Cas9 systems. We found that FnCas9 recognizes the 5'-NGG-3' PAM, and used the structural information to create a variant that can recognize the more relaxed 5'-YG-3' PAM. Furthermore, we demonstrated that the FnCas9-ribonucleoprotein complex can be microinjected into mouse zygotes to edit endogenous sites with the 5'-YG-3' PAM, thus expanding the target space of the CRISPR-Cas9 toolbox.


Assuntos
Proteínas de Bactérias/química , Sistemas CRISPR-Cas , Endonucleases/química , Francisella/enzimologia , Engenharia Genética/métodos , Animais , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Blastocisto/metabolismo , Proteína 9 Associada à CRISPR , Cristalografia por Raios X , Embrião de Mamíferos/metabolismo , Endonucleases/genética , Endonucleases/metabolismo , Camundongos , Microinjeções/métodos , Modelos Moleculares , RNA Guia de Cinetoplastídeos/genética
8.
Nat Immunol ; 19(9): 942-953, 2018 09.
Artigo em Inglês | MEDLINE | ID: mdl-30111894

RESUMO

The sensing of microbial genetic material by leukocytes often elicits beneficial pro-inflammatory cytokines, but dysregulated responses can cause severe pathogenesis. Genome-wide association studies have linked the gene encoding phospholipase D3 (PLD3) to Alzheimer's disease and have linked PLD4 to rheumatoid arthritis and systemic sclerosis. PLD3 and PLD4 are endolysosomal proteins whose functions are obscure. Here, PLD4-deficient mice were found to have an inflammatory disease, marked by elevated levels of interferon-γ (IFN-γ) and splenomegaly. These phenotypes were traced to altered responsiveness of PLD4-deficient dendritic cells to ligands of the single-stranded DNA sensor TLR9. Macrophages from PLD3-deficient mice also had exaggerated TLR9 responses. Although PLD4 and PLD3 were presumed to be phospholipases, we found that they are 5' exonucleases, probably identical to spleen phosphodiesterase, that break down TLR9 ligands. Mice deficient in both PLD3 and PLD4 developed lethal liver inflammation in early life, which indicates that both enzymes are needed to regulate inflammatory cytokine responses via the degradation of nucleic acids.


Assuntos
Células Dendríticas/fisiologia , Endossomos/metabolismo , Exonucleases/metabolismo , Hepatite/genética , Macrófagos/fisiologia , Glicoproteínas de Membrana/metabolismo , Fosfolipase D/metabolismo , Doença de Alzheimer/genética , Animais , Artrite Reumatoide/genética , DNA de Cadeia Simples/imunologia , Exonucleases/genética , Estudo de Associação Genômica Ampla , Humanos , Interferon gama/metabolismo , Glicoproteínas de Membrana/genética , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Fosfolipase D/genética , Escleroderma Sistêmico/genética , Transdução de Sinais , Receptor Toll-Like 9/metabolismo
9.
Nature ; 630(8018): 984-993, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38926615

RESUMO

Genomic rearrangements, encompassing mutational changes in the genome such as insertions, deletions or inversions, are essential for genetic diversity. These rearrangements are typically orchestrated by enzymes that are involved in fundamental DNA repair processes, such as homologous recombination, or in the transposition of foreign genetic material by viruses and mobile genetic elements1,2. Here we report that IS110 insertion sequences, a family of minimal and autonomous mobile genetic elements, express a structured non-coding RNA that binds specifically to their encoded recombinase. This bridge RNA contains two internal loops encoding nucleotide stretches that base-pair with the target DNA and the donor DNA, which is the IS110 element itself. We demonstrate that the target-binding and donor-binding loops can be independently reprogrammed to direct sequence-specific recombination between two DNA molecules. This modularity enables the insertion of DNA into genomic target sites, as well as programmable DNA excision and inversion. The IS110 bridge recombination system expands the diversity of nucleic-acid-guided systems beyond CRISPR and RNA interference, offering a unified mechanism for the three fundamental DNA rearrangements-insertion, excision and inversion-that are required for genome design.


Assuntos
DNA , RNA não Traduzido , Recombinação Genética , Pareamento de Bases , Sequência de Bases , DNA/genética , DNA/metabolismo , Elementos de DNA Transponíveis/genética , Mutagênese Insercional/genética , Recombinases/metabolismo , Recombinases/genética , Recombinação Genética/genética , RNA não Traduzido/genética , RNA não Traduzido/metabolismo
10.
Nature ; 630(8018): 994-1002, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38926616

RESUMO

Insertion sequence (IS) elements are the simplest autonomous transposable elements found in prokaryotic genomes1. We recently discovered that IS110 family elements encode a recombinase and a non-coding bridge RNA (bRNA) that confers modular specificity for target DNA and donor DNA through two programmable loops2. Here we report the cryo-electron microscopy structures of the IS110 recombinase in complex with its bRNA, target DNA and donor DNA in three different stages of the recombination reaction cycle. The IS110 synaptic complex comprises two recombinase dimers, one of which houses the target-binding loop of the bRNA and binds to target DNA, whereas the other coordinates the bRNA donor-binding loop and donor DNA. We uncovered the formation of a composite RuvC-Tnp active site that spans the two dimers, positioning the catalytic serine residues adjacent to the recombination sites in both target and donor DNA. A comparison of the three structures revealed that (1) the top strands of target and donor DNA are cleaved at the composite active sites to form covalent 5'-phosphoserine intermediates, (2) the cleaved DNA strands are exchanged and religated to create a Holliday junction intermediate, and (3) this intermediate is subsequently resolved by cleavage of the bottom strands. Overall, this study reveals the mechanism by which a bispecific RNA confers target and donor DNA specificity to IS110 recombinases for programmable DNA recombination.


Assuntos
DNA , RNA não Traduzido , Recombinação Genética , Domínio Catalítico , Microscopia Crioeletrônica , DNA/química , DNA/metabolismo , DNA/ultraestrutura , Elementos de DNA Transponíveis/genética , Modelos Moleculares , Conformação de Ácido Nucleico , Multimerização Proteica , Recombinases/química , Recombinases/genética , Recombinases/metabolismo , RNA não Traduzido/química , RNA não Traduzido/genética , RNA não Traduzido/metabolismo , RNA não Traduzido/ultraestrutura , Especificidade por Substrato
11.
Cell ; 157(6): 1262-1278, 2014 Jun 05.
Artigo em Inglês | MEDLINE | ID: mdl-24906146

RESUMO

Recent advances in genome engineering technologies based on the CRISPR-associated RNA-guided endonuclease Cas9 are enabling the systematic interrogation of mammalian genome function. Analogous to the search function in modern word processors, Cas9 can be guided to specific locations within complex genomes by a short RNA search string. Using this system, DNA sequences within the endogenous genome and their functional outputs are now easily edited or modulated in virtually any organism of choice. Cas9-mediated genetic perturbation is simple and scalable, empowering researchers to elucidate the functional organization of the genome at the systems level and establish causal linkages between genetic variations and biological phenotypes. In this Review, we describe the development and applications of Cas9 for a variety of research or translational applications while highlighting challenges as well as future directions. Derived from a remarkable microbial defense system, Cas9 is driving innovative applications from basic biology to biotechnology and medicine.


Assuntos
Bactérias/genética , Sistemas CRISPR-Cas , Marcação de Genes , Engenharia Genética , Animais , Bactérias/classificação , Bactérias/imunologia , Bactérias/virologia , Células Eucarióticas/metabolismo , Genoma , Humanos , Streptococcus pyogenes/enzimologia , Streptococcus pyogenes/genética
12.
Cell ; 156(5): 935-49, 2014 Feb 27.
Artigo em Inglês | MEDLINE | ID: mdl-24529477

RESUMO

The CRISPR-associated endonuclease Cas9 can be targeted to specific genomic loci by single guide RNAs (sgRNAs). Here, we report the crystal structure of Streptococcus pyogenes Cas9 in complex with sgRNA and its target DNA at 2.5 Å resolution. The structure revealed a bilobed architecture composed of target recognition and nuclease lobes, accommodating the sgRNA:DNA heteroduplex in a positively charged groove at their interface. Whereas the recognition lobe is essential for binding sgRNA and DNA, the nuclease lobe contains the HNH and RuvC nuclease domains, which are properly positioned for cleavage of the complementary and noncomplementary strands of the target DNA, respectively. The nuclease lobe also contains a carboxyl-terminal domain responsible for the interaction with the protospacer adjacent motif (PAM). This high-resolution structure and accompanying functional analyses have revealed the molecular mechanism of RNA-guided DNA targeting by Cas9, thus paving the way for the rational design of new, versatile genome-editing technologies.


Assuntos
Proteínas Associadas a CRISPR/química , Cristalografia por Raios X , Endonucleases/química , RNA Bacteriano/química , Streptococcus pyogenes/química , Sequência de Aminoácidos , Bactérias/enzimologia , Proteínas Associadas a CRISPR/metabolismo , DNA Bacteriano/química , DNA Bacteriano/metabolismo , Endonucleases/metabolismo , Modelos Moleculares , Dados de Sequência Molecular , Estrutura Terciária de Proteína , RNA Bacteriano/metabolismo , Alinhamento de Sequência , Streptococcus pyogenes/enzimologia , Streptococcus pyogenes/metabolismo , Pequeno RNA não Traduzido
13.
Nature ; 615(7951): 227-230, 2023 03.
Artigo em Inglês | MEDLINE | ID: mdl-36890372

RESUMO

Water is a fundamental molecule in the star and planet formation process, essential for catalysing the growth of solid material and the formation of planetesimals within disks1,2. However, the water snowline and the HDO:H2O ratio within proto-planetary disks have not been well characterized because water only sublimates at roughly 160 K (ref. 3), meaning that most water is frozen out onto dust grains and that the water snowline radii are less than 10 AU (astronomical units)4,5. The sun-like protostar V883 Ori (M* = 1.3 M⊙)6 is undergoing an accretion burst7, increasing its luminosity to roughly 200 L⊙ (ref. 8), and previous observations suggested that its water snowline is 40-120 AU in radius6,9,10. Here we report the direct detection of gas phase water (HDO and [Formula: see text]) from the disk of V883 Ori. We measure a midplane water snowline radius of approximately 80 AU, comparable to the scale of the Kuiper Belt, and detect water out to a radius of roughly 160 AU. We then measure the HDO:H2O ratio of the disk to be (2.26 ± 0.63) × 10-3. This ratio is comparable to those of protostellar envelopes and comets, and exceeds that of Earth's oceans by 3.1σ. We conclude that disks directly inherit water from the star-forming cloud and this water becomes incorporated into large icy bodies, such as comets, without substantial chemical alteration.

14.
Nature ; 616(7958): 790-797, 2023 04.
Artigo em Inglês | MEDLINE | ID: mdl-36921622

RESUMO

Lactate is abundant in rapidly dividing cells owing to the requirement for elevated glucose catabolism to support proliferation1-6. However, it is not known whether accumulated lactate affects the proliferative state. Here we use a systematic approach to determine lactate-dependent regulation of proteins across the human proteome. From these data, we identify a mechanism of cell cycle regulation whereby accumulated lactate remodels the anaphase promoting complex (APC/C). Remodelling of APC/C in this way is caused by direct inhibition of the SUMO protease SENP1 by lactate. We find that accumulated lactate binds and inhibits SENP1 by forming a complex with zinc in the SENP1 active site. SENP1 inhibition by lactate stabilizes SUMOylation of two residues on APC4, which drives UBE2C binding to APC/C. This direct regulation of APC/C by lactate stimulates timed degradation of cell cycle proteins, and efficient mitotic exit in proliferative human cells. This mechanism is initiated upon mitotic entry when lactate abundance reaches its apex. In this way, accumulation of lactate communicates the consequences of a nutrient-replete growth phase to stimulate timed opening of APC/C, cell division and proliferation. Conversely, persistent accumulation of lactate drives aberrant APC/C remodelling and can overcome anti-mitotic pharmacology via mitotic slippage. In sum, we define a biochemical mechanism through which lactate directly regulates protein function to control the cell cycle and proliferation.


Assuntos
Ciclossomo-Complexo Promotor de Anáfase , Proteínas de Ciclo Celular , Ciclo Celular , Ácido Láctico , Humanos , Anáfase , Ciclossomo-Complexo Promotor de Anáfase/metabolismo , Proteínas de Ciclo Celular/metabolismo , Ácido Láctico/metabolismo , Mitose
15.
Cell ; 154(6): 1380-9, 2013 Sep 12.
Artigo em Inglês | MEDLINE | ID: mdl-23992846

RESUMO

Targeted genome editing technologies have enabled a broad range of research and medical applications. The Cas9 nuclease from the microbial CRISPR-Cas system is targeted to specific genomic loci by a 20 nt guide sequence, which can tolerate certain mismatches to the DNA target and thereby promote undesired off-target mutagenesis. Here, we describe an approach that combines a Cas9 nickase mutant with paired guide RNAs to introduce targeted double-strand breaks. Because individual nicks in the genome are repaired with high fidelity, simultaneous nicking via appropriately offset guide RNAs is required for double-stranded breaks and extends the number of specifically recognized bases for target cleavage. We demonstrate that using paired nicking can reduce off-target activity by 50- to 1,500-fold in cell lines and to facilitate gene knockout in mouse zygotes without sacrificing on-target cleavage efficiency. This versatile strategy enables a wide variety of genome editing applications that require high specificity.


Assuntos
Quebras de DNA de Cadeia Dupla , Marcação de Genes/métodos , Genoma , Animais , Sequência de Bases , Camundongos , Dados de Sequência Molecular , Streptococcus pyogenes/enzimologia , Streptococcus pyogenes/genética , Zigoto/metabolismo , Pequeno RNA não Traduzido
16.
Nature ; 594(7864): 535-540, 2021 06.
Artigo em Inglês | MEDLINE | ID: mdl-34163056

RESUMO

Night-migratory songbirds are remarkably proficient navigators1. Flying alone and often over great distances, they use various directional cues including, crucially, a light-dependent magnetic compass2,3. The mechanism of this compass has been suggested to rely on the quantum spin dynamics of photoinduced radical pairs in cryptochrome flavoproteins located in the retinas of the birds4-7. Here we show that the photochemistry of cryptochrome 4 (CRY4) from the night-migratory European robin (Erithacus rubecula) is magnetically sensitive in vitro, and more so than CRY4 from two non-migratory bird species, chicken (Gallus gallus) and pigeon (Columba livia). Site-specific mutations of ErCRY4 reveal the roles of four successive flavin-tryptophan radical pairs in generating magnetic field effects and in stabilizing potential signalling states in a way that could enable sensing and signalling functions to be independently optimized in night-migratory birds.


Assuntos
Migração Animal , Criptocromos/genética , Campos Magnéticos , Aves Canoras , Animais , Proteínas Aviárias/genética , Galinhas , Columbidae , Retina
17.
Mol Cell ; 74(4): 729-741.e7, 2019 05 16.
Artigo em Inglês | MEDLINE | ID: mdl-30982745

RESUMO

The nascent polypeptide-associated complex (NAC) is a conserved ribosome-associated protein biogenesis factor. Whether NAC exerts chaperone activity and whether this function is restricted to de novo protein synthesis is unknown. Here, we demonstrate that NAC directly exerts chaperone activity toward structurally diverse model substrates including polyglutamine (PolyQ) proteins, firefly luciferase, and Aß40. Strikingly, we identified the positively charged ribosome-binding domain in the N terminus of the ßNAC subunit (N-ßNAC) as a major chaperone entity of NAC. N-ßNAC by itself suppressed aggregation of PolyQ-expanded proteins in vitro, and the positive charge of this domain was critical for this activity. Moreover, we found that NAC also exerts a ribosome-independent chaperone function in vivo. Consistently, we found that a substantial fraction of NAC is non-ribosomal bound in higher eukaryotes. In sum, NAC is a potent suppressor of aggregation and proteotoxicity of mutant PolyQ-expanded proteins associated with human diseases like Huntington's disease and spinocerebellar ataxias.


Assuntos
Peptídeos beta-Amiloides/genética , Chaperonas Moleculares/genética , Agregação Patológica de Proteínas/genética , Peptídeos beta-Amiloides/química , Sítios de Ligação/genética , Humanos , Doença de Huntington/genética , Doença de Huntington/patologia , Luciferases/química , Luciferases/genética , Chaperonas Moleculares/química , Peptídeos/química , Peptídeos/genética , Ligação Proteica/genética , Biossíntese de Proteínas/genética , Domínios Proteicos/genética , Dobramento de Proteína , Ribossomos/genética , Ataxias Espinocerebelares/genética , Ataxias Espinocerebelares/patologia
18.
Trends Biochem Sci ; 47(9): 732-735, 2022 09.
Artigo em Inglês | MEDLINE | ID: mdl-35418348

RESUMO

Alternative histone acylations integrate gene expression with cellular metabolic states. Recent measurements of cellular acyl-coenzyme A (acyl-CoA) pools highlight the potential that histone post-translational modifications (PTMs) contribute directly to the regulation of metabolite pools. A metabolite-centric view throws new light onto roles and evolution of histone PTMs.


Assuntos
Cromatina , Histonas , Acil Coenzima A/metabolismo , Acilação , Histonas/metabolismo , Processamento de Proteína Pós-Traducional
19.
Nat Methods ; 20(9): 1291-1303, 2023 09.
Artigo em Inglês | MEDLINE | ID: mdl-37400558

RESUMO

An unambiguous description of an experiment, and the subsequent biological observation, is vital for accurate data interpretation. Minimum information guidelines define the fundamental complement of data that can support an unambiguous conclusion based on experimental observations. We present the Minimum Information About Disorder Experiments (MIADE) guidelines to define the parameters required for the wider scientific community to understand the findings of an experiment studying the structural properties of intrinsically disordered regions (IDRs). MIADE guidelines provide recommendations for data producers to describe the results of their experiments at source, for curators to annotate experimental data to community resources and for database developers maintaining community resources to disseminate the data. The MIADE guidelines will improve the interpretability of experimental results for data consumers, facilitate direct data submission, simplify data curation, improve data exchange among repositories and standardize the dissemination of the key metadata on an IDR experiment by IDR data sources.


Assuntos
Proteínas Intrinsicamente Desordenadas , Proteínas Intrinsicamente Desordenadas/química , Conformação Proteica
20.
PLoS Biol ; 21(6): e3002097, 2023 06.
Artigo em Inglês | MEDLINE | ID: mdl-37310920

RESUMO

Identifying host genes essential for Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2) has the potential to reveal novel drug targets and further our understanding of Coronavirus Disease 2019 (COVID-19). We previously performed a genome-wide CRISPR/Cas9 screen to identify proviral host factors for highly pathogenic human coronaviruses. Few host factors were required by diverse coronaviruses across multiple cell types, but DYRK1A was one such exception. Although its role in coronavirus infection was previously undescribed, DYRK1A encodes Dual Specificity Tyrosine Phosphorylation Regulated Kinase 1A and is known to regulate cell proliferation and neuronal development. Here, we demonstrate that DYRK1A regulates ACE2 and DPP4 transcription independent of its catalytic kinase function to support SARS-CoV, SARS-CoV-2, and Middle East Respiratory Syndrome Coronavirus (MERS-CoV) entry. We show that DYRK1A promotes DNA accessibility at the ACE2 promoter and a putative distal enhancer, facilitating transcription and gene expression. Finally, we validate that the proviral activity of DYRK1A is conserved across species using cells of nonhuman primate and human origin. In summary, we report that DYRK1A is a novel regulator of ACE2 and DPP4 expression that may dictate susceptibility to multiple highly pathogenic human coronaviruses.


Assuntos
COVID-19 , Internalização do Vírus , Animais , Humanos , Enzima de Conversão de Angiotensina 2 , COVID-19/genética , COVID-19/metabolismo , Dipeptidil Peptidase 4 , Coronavírus da Síndrome Respiratória do Oriente Médio/genética , SARS-CoV-2/genética , Coronavírus Relacionado à Síndrome Respiratória Aguda Grave/genética , Quinases Dyrk
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa