Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 61
Filtrar
1.
Nucleic Acids Res ; 52(7): 3924-3937, 2024 Apr 24.
Artigo em Inglês | MEDLINE | ID: mdl-38421610

RESUMO

RNA ligases are important enzymes in molecular biology and are highly useful for the manipulation and analysis of nucleic acids, including adapter ligation in next-generation sequencing of microRNAs. Thermophilic RNA ligases belonging to the RNA ligase 3 family are gaining attention for their use in molecular biology, for example a thermophilic RNA ligase from Methanobacterium thermoautotrophicum is commercially available for the adenylation of nucleic acids. Here we extensively characterise a newly identified RNA ligase from the thermophilic archaeon Palaeococcus pacificus (PpaRnl). PpaRnl exhibited significant substrate adenylation activity but low ligation activity across a range of oligonucleotide substrates. Mutation of Lys92 in motif I to alanine, resulted in an enzyme that lacked adenylation activity, but demonstrated improved ligation activity with pre-adenylated substrates (ATP-independent ligation). Subsequent structural characterisation revealed that in this mutant enzyme Lys238 was found in two alternate positions for coordination of the phosphate tail of ATP. In contrast mutation of Lys238 in motif V to glycine via structure-guided engineering enhanced ATP-dependent ligation activity via an arginine residue compensating for the absence of Lys238. Ligation activity for both mutations was higher than the wild-type, with activity observed across a range of oligonucleotide substrates with varying sequence and secondary structure.


Assuntos
RNA Ligase (ATP) , RNA Ligase (ATP)/metabolismo , RNA Ligase (ATP)/genética , RNA Ligase (ATP)/química , Especificidade por Substrato , Proteínas Arqueais/metabolismo , Proteínas Arqueais/genética , Proteínas Arqueais/química , Planococáceas/enzimologia , Planococáceas/genética , Engenharia de Proteínas , Mutação , Modelos Moleculares , Trifosfato de Adenosina/metabolismo , Oligonucleotídeos/metabolismo , Oligonucleotídeos/genética
2.
Biochemistry ; 62(2): 158-162, 2023 01 17.
Artigo em Inglês | MEDLINE | ID: mdl-35820168

RESUMO

Natural evolution has been creating new complex systems for billions of years. The process is spontaneous and requires neither intelligence nor moral purpose but is nevertheless difficult to understand. The late Dan Tawfik spent years studying enzymes as they adapted to recognize new substrates. Much of his work focused on gaining fundamental insights, so the practical utility of his experiments may not be obvious even to accomplished protein engineers. Here we focus on two questions fundamental to any directed evolution experiment. Which proteins are the best starting points for such experiments? Which trait(s) of the chosen parental protein should be evolved to achieve the desired outcome? We summarize Tawfik's contributions to our understanding of these problems, to honor his memory and encourage those unfamiliar with his ideas to read his publications.


Assuntos
Proteínas
3.
J Biol Chem ; 296: 100797, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34019879

RESUMO

Bacterial methionine biosynthesis can take place by either the trans-sulfurylation route or direct sulfurylation. The enzymes responsible for trans-sulfurylation have been characterized extensively because they occur in model organisms such as Escherichia coli. However, direct sulfurylation is actually the predominant route for methionine biosynthesis across the phylogenetic tree. In this pathway, most bacteria use an O-acetylhomoserine aminocarboxypropyltransferase (MetY) to catalyze the formation of homocysteine from O-acetylhomoserine and bisulfide. Despite the widespread distribution of MetY, this pyridoxal 5'-phosphate-dependent enzyme remains comparatively understudied. To address this knowledge gap, we have characterized the MetY from Thermotoga maritima (TmMetY). At its optimal temperature of 70 °C, TmMetY has a turnover number (apparent kcat = 900 s-1) that is 10- to 700-fold higher than the three other MetY enzymes for which data are available. We also present crystal structures of TmMetY in the internal aldimine form and, fortuitously, with a ß,γ-unsaturated ketimine reaction intermediate. This intermediate is identical to that found in the catalytic cycle of cystathionine γ-synthase (MetB), which is a homologous enzyme from the trans-sulfurylation pathway. By comparing the TmMetY and MetB structures, we have identified Arg270 as a critical determinant of specificity. It helps to wall off the active site of TmMetY, disfavoring the binding of the first MetB substrate, O-succinylhomoserine. It also ensures a strict specificity for bisulfide as the second substrate of MetY by occluding the larger MetB substrate, cysteine. Overall, this work illuminates the subtle structural mechanisms by which homologous pyridoxal 5'-phosphate-dependent enzymes can effect different catalytic, and therefore metabolic, outcomes.


Assuntos
Proteínas de Bactérias/metabolismo , Metionina/metabolismo , Thermotoga maritima/metabolismo , Proteínas de Bactérias/química , Vias Biossintéticas , Cristalografia por Raios X , Cinética , Modelos Moleculares , Thermotoga maritima/química
4.
Arch Microbiol ; 204(1): 114, 2022 Jan 04.
Artigo em Inglês | MEDLINE | ID: mdl-34984547

RESUMO

Ribosomes are the protein production machines in all living cells. Yet in contrast to our understanding of how the ribosome translates DNA information into life, the steps involved in ribosome biogenesis, the assembly of the ribosomal RNA (rRNA) and protein molecules that make up the ribosome, remain incomplete. YbeY is considered one of the most physiologically critical endoribonucleases and is implicated in numerous roles involving RNA including 16S rRNA maturation, yet our existing knowledge of its biochemical function fails to explain the phenotypes that manifest when it is lost. In bacteria, it is common for functionally associated genes to be found co-localized in the genome. Across phylogenetically diverse bacteria, the gene encoding ybeZ, encoding a PhoH domain protein, sits adjacent to ybeY. Recent experimental evidence has shown that PhoH domains are RNA helicases, suggesting that this is also the role of YbeZ. The role of an RNA helicase to support the function of YbeY would help explain its reported biochemistry; therefore, we propose a model for the function of YbeZ in 16S rRNA maturation, linking it with the most recent hypotheses on the function of YbeY, that YbeY together with other ribosomal proteins, and ribosome-associated proteins, plays a role in the biogenesis of the small ribosomal subunit. Our model provides a testable hypothesis to resolve the outstanding details surrounding ribosome biogenesis in bacteria.


Assuntos
Proteínas de Escherichia coli , Metaloproteínas , RNA Ribossômico/genética , RNA Ribossômico 16S/genética , Ribossomos/genética
5.
J Biol Chem ; 295(47): 15948-15956, 2020 11 20.
Artigo em Inglês | MEDLINE | ID: mdl-32928960

RESUMO

In tryptophan biosynthesis, the reaction catalyzed by the enzyme indole-3-glycerol phosphate synthase (IGPS) starts with a condensation step in which the substrate's carboxylated phenyl group makes a nucleophilic attack to form the pyrrole ring of the indole, followed by a decarboxylation that restores the aromaticity of the phenyl. IGPS from Pseudomonas aeruginosa has the highest turnover number of all characterized IGPS enzymes, providing an excellent model system to test the necessity of the decarboxylation step. Since the 1960s, this step has been considered to be mechanistically essential based on studies of the IGPS-phosphoribosylanthranilate isomerase fusion protein from Escherichia coli Here, we present the crystal structure of P. aeruginosa IGPS in complex with reduced CdRP, a nonreactive substrate analog, and using a sensitive discontinuous assay, we demonstrate weak promiscuous activity on the decarboxylated substrate 1-(phenylamino)-1-deoxyribulose-5-phosphate, with an ∼1000× lower rate of IGP formation than from the native substrate. We also show that E. coli IGPS, at an even lower rate, can produce IGP from decarboxylated substrate. Our structure of P. aeruginosa IGPS has eight molecules in the asymmetric unit, of which seven contain ligand and one displays a previously unobserved conformation closer to the reactive state. One of the few nonconserved active-site residues, Phe201 in P. aeruginosa IGPS, is by mutagenesis demonstrated to be important for the higher turnover of this enzyme on both substrates. Our results demonstrate that despite IGPS's classification as a carboxy-lyase (i.e. decarboxylase), decarboxylation is not a completely essential step in its catalysis.


Assuntos
Proteínas de Bactérias/química , Indol-3-Glicerolfosfato Sintase/química , Modelos Moleculares , Pseudomonas aeruginosa/enzimologia , Domínio Catalítico , Descarboxilação , Cinética
6.
Proc Natl Acad Sci U S A ; 114(18): 4727-4732, 2017 05 02.
Artigo em Inglês | MEDLINE | ID: mdl-28416687

RESUMO

New genes can arise by duplication and divergence, but there is a fundamental gap in our understanding of the relationship between these genes, the evolving proteins they encode, and the fitness of the organism. Here we used crystallography, NMR dynamics, kinetics, and mass spectrometry to explain the molecular innovations that arose during a previous real-time evolution experiment. In that experiment, the (ßα)8 barrel enzyme HisA was under selection for two functions (HisA and TrpF), resulting in duplication and divergence of the hisA gene to encode TrpF specialists, HisA specialists, and bifunctional generalists. We found that selection affects enzyme structure and dynamics, and thus substrate preference, simultaneously and sequentially. Bifunctionality is associated with two distinct sets of loop conformations, each essential for one function. We observed two mechanisms for functional specialization: structural stabilization of each loop conformation and substrate-specific adaptation of the active site. Intracellular enzyme performance, calculated as the product of catalytic efficiency and relative expression level, was not linearly related to fitness. Instead, we observed thresholds for each activity above which further improvements in catalytic efficiency had little if any effect on growth rate. Overall, we have shown how beneficial substitutions selected during real-time evolution can lead to manifold changes in enzyme function and bacterial fitness. This work emphasizes the speed at which adaptive evolution can yield enzymes with sufficiently high activities such that they no longer limit the growth of their host organism, and confirms the (ßα)8 barrel as an inherently evolvable protein scaffold.


Assuntos
Acinetobacter/enzimologia , Proteínas de Bactérias/química , Evolução Molecular Direcionada , Esterases/química , Espectroscopia de Ressonância Magnética , Pseudomonas aeruginosa/enzimologia , Acinetobacter/genética , Proteínas de Bactérias/genética , Esterases/genética , Domínios Proteicos , Pseudomonas aeruginosa/genética , Relação Estrutura-Atividade
7.
J Biol Chem ; 293(19): 7160-7175, 2018 05 11.
Artigo em Inglês | MEDLINE | ID: mdl-29567837

RESUMO

Members of the bromodomain and extra-terminal domain (BET) family of proteins (bromodomain-containing (BRD) 2, 3, 4, and T) are widely expressed and highly conserved regulators of gene expression in eukaryotes. These proteins have been intimately linked to human disease, and more than a dozen clinical trials are currently underway to test BET-protein inhibitors as modulators of cancer. However, although it is clear that these proteins use their bromodomains to bind both histones and transcription factors bearing acetylated lysine residues, the molecular mechanisms by which BET family proteins regulate gene expression are not well defined. In particular, the functions of the other domains such as the ET domain have been less extensively studied. Here, we examine the properties of the ET domain of BRD3 as a protein/protein interaction module. Using a combination of pulldown and biophysical assays, we demonstrate that BRD3 binds to a range of chromatin-remodeling complexes, including the NuRD, BAF, and INO80 complexes, via a short linear "KIKL" motif in one of the complex subunits. NMR-based structural analysis revealed that, surprisingly, this mode of interaction is shared by the AF9 and ENL transcriptional coregulators that contain an acetyl-lysine-binding YEATS domain and regulate transcriptional elongation. This observation establishes a functional commonality between these two families of cancer-related transcriptional regulators. In summary, our data provide insight into the mechanisms by which BET family proteins might link chromatin acetylation to transcriptional outcomes and uncover an unexpected functional similarity between BET and YEATS family proteins.


Assuntos
Montagem e Desmontagem da Cromatina , Peptídeos/química , Proteínas de Ligação a RNA/metabolismo , Transativadores/metabolismo , ATPases Associadas a Diversas Atividades Celulares , Acetilação , Motivos de Aminoácidos , Sequência de Aminoácidos , Fenômenos Biofísicos , DNA Helicases/metabolismo , Proteínas de Ligação a DNA/metabolismo , Regulação da Expressão Gênica/fisiologia , Redes Reguladoras de Genes , Células HEK293 , Humanos , Complexo Mi-2 de Remodelação de Nucleossomo e Desacetilase/metabolismo , Proteínas Nucleares/metabolismo , Ligação Proteica , Domínios Proteicos , Proteínas de Ligação a RNA/química , Proteínas de Ligação a RNA/fisiologia , Homologia de Sequência de Aminoácidos , Transativadores/química , Fatores de Transcrição
8.
Proteins ; 87(8): 699-705, 2019 08.
Artigo em Inglês | MEDLINE | ID: mdl-30958578

RESUMO

InterPro family IPR020489 comprises ~1000 uncharacterized bacterial proteins. Previously we showed that overexpressing the Escherichia coli representative of this family, EcYejG, conferred low-level resistance to aminoglycoside antibiotics. In an attempt to shed light on the biochemical function of EcYejG, we have solved its structure using multinuclear solution NMR spectroscopy. The structure most closely resembles that of domain III from elongation factor G (EF-G). EF-G catalyzes ribosomal translocation and mutations in EF-G have also been associated with aminoglycoside resistance. While we were unable to demonstrate a direct interaction between EcYejG and the ribosome, the protein might play a role in translation.


Assuntos
Proteínas de Escherichia coli/química , Escherichia coli/química , Fator G para Elongação de Peptídeos/química , Modelos Moleculares , Ressonância Magnética Nuclear Biomolecular , Biossíntese de Proteínas , Conformação Proteica , Domínios Proteicos , Ribossomos/química
9.
Antimicrob Agents Chemother ; 63(12)2019 09 09.
Artigo em Inglês | MEDLINE | ID: mdl-31570397

RESUMO

Pseudomonas aeruginosa is an opportunistic pathogen that causes a wide range of acute and chronic infections. An increasing number of isolates have mutations that make them antibiotic resistant, making treatment difficult. To identify resistance-associated mutations we experimentally evolved the antibiotic sensitive strain P. aeruginosa PAO1 to become resistant to three widely used anti-pseudomonal antibiotics, ciprofloxacin, meropenem and tobramycin. Mutants could tolerate up to 2048-fold higher concentrations of antibiotic than strain PAO1. Genome sequences were determined for thirteen mutants for each antibiotic. Each mutant had between 2 and 8 mutations. For each antibiotic at least 8 genes were mutated in multiple mutants, demonstrating the genetic complexity of resistance. For all three antibiotics mutations arose in genes known to be associated with resistance, but also in genes not previously associated with resistance. To determine the clinical relevance of mutations uncovered in this study we analysed the corresponding genes in 558 isolates of P. aeruginosa from patients with chronic lung disease and in 172 isolates from the general environment. Many genes identified through experimental evolution had predicted function-altering changes in clinical isolates but not in environmental isolates, showing that mutated genes in experimentally evolved bacteria can predict those that undergo mutation during infection. Additionally, large deletions of up to 479kb arose in experimentally evolved meropenem resistant mutants and large deletions were present in 87 of the clinical isolates. These findings significantly advance understanding of antibiotic resistance in P. aeruginosa and demonstrate the validity of experimental evolution in identifying clinically-relevant resistance-associated mutations.

10.
Mol Microbiol ; 105(4): 508-524, 2017 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-28640457

RESUMO

The first cells probably possessed rudimentary metabolic networks, built using a handful of multifunctional enzymes. The promiscuous activities of modern enzymes are often assumed to be relics of this primordial era; however, by definition these activities are no longer physiological. There are many fewer examples of enzymes using a single active site to catalyze multiple physiologically-relevant reactions. Previously, we characterized the promiscuous alanine racemase (ALR) activity of Escherichia coli cystathionine ß-lyase (CBL). Now we have discovered that several bacteria with reduced genomes lack alr, but contain metC (encoding CBL). We characterized the CBL enzymes from three of these: Pelagibacter ubique, the Wolbachia endosymbiont of Drosophila melanogaster (wMel) and Thermotoga maritima. Each is a multifunctional CBL/ALR. However, we also show that CBL activity is no longer required in these bacteria. Instead, the wMel and T. maritima enzymes are physiologically bi-functional alanine/glutamate racemases. They are not highly active, but they are clearly sufficient. Given the abundance of the microorganisms using them, we suggest that much of the planet's biochemistry is carried out by enzymes that are quite different from the highly-active exemplars usually found in textbooks. Instead, primordial-like enzymes may be an essential part of the adaptive strategy associated with streamlining.


Assuntos
Enzimas/genética , Liases/genética , Alanina/metabolismo , Sequência de Aminoácidos , Domínio Catalítico , Escherichia coli/genética , Genoma/genética , Genoma Bacteriano/genética , Liases/metabolismo , Redes e Vias Metabólicas , Thermotoga maritima/genética , Wolbachia/genética
11.
J Biol Chem ; 291(38): 19873-87, 2016 09 16.
Artigo em Inglês | MEDLINE | ID: mdl-27474741

RESUMO

Enzymes that utilize the cofactor pyridoxal 5'-phosphate play essential roles in amino acid metabolism in all organisms. The cofactor is used by proteins that adopt at least five different folds, which raises questions about the evolutionary processes that might explain the observed distribution of functions among folds. In this study, we show that a representative of fold type III, the Escherichia coli alanine racemase (ALR), is a promiscuous cystathionine ß-lyase (CBL). Furthermore, E. coli CBL (fold type I) is a promiscuous alanine racemase. A single round of error-prone PCR and selection yielded variant ALR(Y274F), which catalyzes cystathionine ß-elimination with a near-native Michaelis constant (Km = 3.3 mm) but a poor turnover number (kcat ≈10 h(-1)). In contrast, directed evolution also yielded CBL(P113S), which catalyzes l-alanine racemization with a poor Km (58 mm) but a high kcat (22 s(-1)). The structures of both variants were solved in the presence and absence of the l-alanine analogue, (R)-1-aminoethylphosphonic acid. As expected, the ALR active site was enlarged by the Y274F substitution, allowing better access for cystathionine. More surprisingly, the favorable kinetic parameters of CBL(P113S) appear to result from optimizing the pKa of Tyr-111, which acts as the catalytic acid during l-alanine racemization. Our data emphasize the short mutational routes between the functions of pyridoxal 5'-phosphate-dependent enzymes, regardless of whether or not they share the same fold. Thus, they confound the prevailing model of enzyme evolution, which predicts that overlapping patterns of promiscuity result from sharing a common multifunctional ancestor.


Assuntos
Alanina Racemase/química , Proteínas de Escherichia coli/química , Escherichia coli/enzimologia , Evolução Molecular , Liases/química , Mutação de Sentido Incorreto , Alanina Racemase/genética , Alanina Racemase/metabolismo , Substituição de Aminoácidos , Escherichia coli/genética , Proteínas de Escherichia coli/genética , Proteínas de Escherichia coli/metabolismo , Liases/genética , Liases/metabolismo , Fosfato de Piridoxal/química , Fosfato de Piridoxal/genética , Fosfato de Piridoxal/metabolismo
12.
J Biol Chem ; 290(41): 24657-68, 2015 Oct 09.
Artigo em Inglês | MEDLINE | ID: mdl-26294764

RESUMO

HisA is a (ßα)8 barrel enzyme that catalyzes the Amadori rearrangement of N'-[(5'-phosphoribosyl)formimino]-5-aminoimidazole-4-carboxamide ribonucleotide (ProFAR) to N'-((5'-phosphoribulosyl) formimino)-5-aminoimidazole-4-carboxamide-ribonucleotide (PRFAR) in the histidine biosynthesis pathway, and it is a paradigm for the study of enzyme evolution. Still, its exact catalytic mechanism has remained unclear. Here, we present crystal structures of wild type Salmonella enterica HisA (SeHisA) in its apo-state and of mutants D7N and D7N/D176A in complex with two different conformations of the labile substrate ProFAR, which was structurally visualized for the first time. Site-directed mutagenesis and kinetics demonstrated that Asp-7 acts as the catalytic base, and Asp-176 acts as the catalytic acid. The SeHisA structures with ProFAR display two different states of the long loops on the catalytic face of the structure and demonstrate that initial binding of ProFAR to the active site is independent of loop interactions. When the long loops enclose the substrate, ProFAR adopts an extended conformation where its non-reacting half is in a product-like conformation. This change is associated with shifts in a hydrogen bond network including His-47, Asp-129, Thr-171, and Ser-202, all shown to be functionally important. The closed conformation structure is highly similar to the bifunctional HisA homologue PriA in complex with PRFAR, thus proving that structure and mechanism are conserved between HisA and PriA. This study clarifies the mechanistic cycle of HisA and provides a striking example of how an enzyme and its substrate can undergo coordinated conformational changes before catalysis.


Assuntos
Aldose-Cetose Isomerases/química , Aldose-Cetose Isomerases/metabolismo , Biocatálise , Aldose-Cetose Isomerases/genética , Sequência de Aminoácidos , Apoenzimas/química , Apoenzimas/genética , Apoenzimas/metabolismo , Domínio Catalítico , Imidazóis/metabolismo , Cinética , Ligantes , Modelos Moleculares , Dados de Sequência Molecular , Mutação , Ligação Proteica , Ribonucleotídeos/metabolismo , Saccharomyces cerevisiae/enzimologia
13.
Biol Lett ; 12(8)2016 08.
Artigo em Inglês | MEDLINE | ID: mdl-27555646

RESUMO

Life has existed on the Earth for approximately four billion years. The sheer depth of evolutionary time, and the diversity of extant species, makes it tempting to assume that all the key biochemical innovations underpinning life have already happened. But we are only a little over halfway through the trajectory of life on our planet. In this Opinion piece, we argue: (i) that sufficient time remains for the evolution of new processes at the heart of metabolic biochemistry and (ii) that synthetic biology is providing predictive insights into the nature of these innovations. By way of example, we focus on engineered solutions to existing inefficiencies in energy generation, and on the complex, synthetic regulatory circuits that are currently being implemented.


Assuntos
Evolução Biológica , Planeta Terra , Vida
14.
Archaea ; 2015: 170571, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-26494982

RESUMO

With their ability to catalyse the formation of phosphodiester linkages, DNA ligases and RNA ligases are essential tools for many protocols in molecular biology and biotechnology. Currently, the nucleic acid ligases from bacteriophage T4 are used extensively in these protocols. In this review, we argue that the nucleic acid ligases from Archaea represent a largely untapped pool of enzymes with diverse and potentially favourable properties for new and emerging biotechnological applications. We summarise the current state of knowledge on archaeal DNA and RNA ligases, which makes apparent the relative scarcity of information on in vitro activities that are of most relevance to biotechnologists (such as the ability to join blunt- or cohesive-ended, double-stranded DNA fragments). We highlight the existing biotechnological applications of archaeal DNA ligases and RNA ligases. Finally, we draw attention to recent experiments in which protein engineering was used to modify the activities of the DNA ligase from Pyrococcus furiosus and the RNA ligase from Methanothermobacter thermautotrophicus, thus demonstrating the potential for further work in this area.


Assuntos
Archaea/enzimologia , Biotecnologia/métodos , DNA Ligases/isolamento & purificação , DNA Ligases/metabolismo , RNA Ligase (ATP)/isolamento & purificação , RNA Ligase (ATP)/metabolismo , Archaea/genética , DNA Ligases/genética , Engenharia de Proteínas , RNA Ligase (ATP)/genética
15.
J Mol Evol ; 78(6): 307-9, 2014 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-24916657

RESUMO

We propose that glycine was the first amino acid to be incorporated into the genetic code, followed by serine, aspartic and/or glutamic acid-small hydrophilic amino acids that all have codons in the bottom right-hand corner of the standard genetic code table. Because primordial ribosomal synthesis is presumed to have been rudimentary, this stage would have been characterized by the synthesis of short, water-soluble peptides, the first of which would have comprised polyglycine. Evolution of the code is proposed to have occurred by the duplication and mutation of tRNA sequences, which produced a radiation of codon assignment outwards from the bottom right-hand corner. As a result of this expansion, we propose a trend from small hydrophilic to hydrophobic amino acids, with selection for longer polypeptides requiring a hydrophobic core for folding and stability driving the incorporation of hydrophobic amino acids into the code.


Assuntos
Aminoácidos/genética , Evolução Molecular , Código Genético , Glicina/genética , Interações Hidrofóbicas e Hidrofílicas
16.
Microbiology (Reading) ; 160(Pt 8): 1571-1584, 2014 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-24939187

RESUMO

Methionine is essential in all organisms, as it is both a proteinogenic amino acid and a component of the cofactor, S-adenosyl methionine. The metabolic pathway for its biosynthesis has been extensively characterized in Escherichia coli; however, it is becoming apparent that most bacterial species do not use the E. coli pathway. Instead, studies on other organisms and genome sequencing data are uncovering significant diversity in the enzymes and metabolic intermediates that are used for methionine biosynthesis. This review summarizes the different biochemical strategies that are employed in the three key steps for methionine biosynthesis from homoserine (i.e. acylation, sulfurylation and methylation). A survey is presented of the presence and absence of the various biosynthetic enzymes in 1593 representative bacterial species, shedding light on the non-canonical nature of the E. coli pathway. This review also highlights ways in which knowledge of methionine biosynthesis can be utilized for biotechnological applications. Finally, gaps in the current understanding of bacterial methionine biosynthesis are noted. For example, the paper discusses the presence of one gene (metC) in a large number of species that appear to lack the gene encoding the enzyme for the preceding step in the pathway (metB), as it is understood in E. coli. Therefore, this review aims to move the focus away from E. coli, to better reflect the true diversity of bacterial pathways for methionine biosynthesis.


Assuntos
Bactérias/metabolismo , Metionina/biossíntese , Bactérias/genética , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Escherichia coli/genética , Escherichia coli/metabolismo , Regulação Bacteriana da Expressão Gênica
17.
Appl Environ Microbiol ; 80(11): 3394-403, 2014 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-24657865

RESUMO

Acetogenic bacteria use CO and/or CO2 plus H2 as their sole carbon and energy sources. Fermentation processes with these organisms hold promise for producing chemicals and biofuels from abundant waste gas feedstocks while simultaneously reducing industrial greenhouse gas emissions. The acetogen Clostridium autoethanogenum is known to synthesize the pyruvate-derived metabolites lactate and 2,3-butanediol during gas fermentation. Industrially, 2,3-butanediol is valuable for chemical production. Here we identify and characterize the C. autoethanogenum enzymes for lactate and 2,3-butanediol biosynthesis. The putative C. autoethanogenum lactate dehydrogenase was active when expressed in Escherichia coli. The 2,3-butanediol pathway was reconstituted in E. coli by cloning and expressing the candidate genes for acetolactate synthase, acetolactate decarboxylase, and 2,3-butanediol dehydrogenase. Under anaerobic conditions, the resulting E. coli strain produced 1.1 ± 0.2 mM 2R,3R-butanediol (23 µM h(-1) optical density unit(-1)), which is comparable to the level produced by C. autoethanogenum during growth on CO-containing waste gases. In addition to the 2,3-butanediol dehydrogenase, we identified a strictly NADPH-dependent primary-secondary alcohol dehydrogenase (CaADH) that could reduce acetoin to 2,3-butanediol. Detailed kinetic analysis revealed that CaADH accepts a range of 2-, 3-, and 4-carbon substrates, including the nonphysiological ketones acetone and butanone. The high activity of CaADH toward acetone led us to predict, and confirm experimentally, that C. autoethanogenum can act as a whole-cell biocatalyst for converting exogenous acetone to isopropanol. Together, our results functionally validate the 2,3-butanediol pathway from C. autoethanogenum, identify CaADH as a target for further engineering, and demonstrate the potential of C. autoethanogenum as a platform for sustainable chemical production.


Assuntos
Oxirredutases do Álcool/metabolismo , Butileno Glicóis/metabolismo , Clostridium/genética , Clostridium/metabolismo , Redes e Vias Metabólicas/genética , NADP/metabolismo , Acetoína/metabolismo , Acetolactato Sintase/genética , Acetolactato Sintase/metabolismo , Oxirredutases do Álcool/genética , Anaerobiose , Monóxido de Carbono/metabolismo , Carboxiliases/genética , Carboxiliases/metabolismo , Clonagem Molecular , Escherichia coli/genética , Escherichia coli/metabolismo , Expressão Gênica , Cinética , Especificidade por Substrato
18.
Proc Natl Acad Sci U S A ; 108(4): 1484-9, 2011 Jan 25.
Artigo em Inglês | MEDLINE | ID: mdl-21173244

RESUMO

Duplicated genes provide an important raw material for adaptive evolution. However, the relationship between gene duplication and the emergence of new biochemical functions is complicated, and it has been difficult to quantify the likelihood of evolving novelty in any systematic manner. Here, we describe a comprehensive search for artificially amplified genes that are able to impart new phenotypes on Escherichia coli, provided their expression is up-regulated. We used a high-throughput, library-on-library strategy to screen for resistance to antibiotics and toxins. Cells containing a complete E. coli ORF library were exposed to 237 toxin-containing environments. From 86 of these environments, we identified a total of 115 cases where overexpressed ORFs imparted improved growth. Of the overexpressed ORFs that we tested, most conferred small but reproducible increases in minimum inhibitory concentration (≤16-fold) for their corresponding antibiotics. In many cases, proteins were acting promiscuously to impart resistance. In the absence of toxins, most strains bore no fitness cost associated with ORF overexpression. Our results show that even the genome of a nonpathogenic bacterium harbors a substantial reservoir of resistance genes, which can be readily accessed through overexpression mutations. During the growth of a population under selection, these mutations are most likely to be gene amplifications. Therefore, our work provides validation and biochemical insight into the innovation, amplification, and divergence model of gene evolution under continuous selection [Bergthorsson U, Andersson DI, Roth JR (2007) Proc Natl Acad Sci USA 104:17004-17009], and also illustrates the high frequency at which novel traits can evolve in bacterial populations.


Assuntos
Farmacorresistência Bacteriana Múltipla/genética , Proteínas de Escherichia coli/genética , Escherichia coli/genética , Amplificação de Genes , Antibacterianos/farmacologia , Escherichia coli/efeitos dos fármacos , Escherichia coli/crescimento & desenvolvimento , Evolução Molecular , Duplicação Gênica , Biblioteca Gênica , Testes de Sensibilidade Microbiana , Modelos Genéticos , Mutação , Fases de Leitura Aberta/genética , Seleção Genética
19.
Biosci Biotechnol Biochem ; 77(2): 402-4, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-23391930

RESUMO

It is often desirable to obtain gene libraries with the greatest possible number of variants. We tested two different methods for desalting the products of library ligation reactions (silica-based microcolumns and drop dialysis), and examined their effects on final library size. For both intramolecular and intermolecular ligation, desalting by drop dialysis yielded approximately 3-5 times more transformants than microcolumn purification.


Assuntos
Clonagem Molecular/métodos , DNA/isolamento & purificação , Biblioteca Gênica , Vetores Genéticos/isolamento & purificação , Microdiálise/métodos , Sais/química , Adsorção , Contagem de Colônia Microbiana , DNA/genética , Eletroporação , Escherichia coli/genética , Microdiálise/normas , Transformação Bacteriana
20.
Protein Sci ; 32(9): e4743, 2023 09.
Artigo em Inglês | MEDLINE | ID: mdl-37515423

RESUMO

l-Malate is a key flavor enhancer and acidulant in the food and beverage industry, particularly winemaking. Enzyme-based amperometric biosensors offer convenience for monitoring its concentration. However, only a small number of off-the-shelf malate-oxidizing enzymes have been used in previous devices. These typically have linear ranges poorly suited for the l-malate concentrations found in fruit processing and winemaking, making it necessary to use precisely diluted samples. Here, we describe a pipeline of database-mining, gene synthesis, recombinant expression, and spectrophotometric assays to characterize previously untested enzymes for their suitability in biosensors. The pipeline yielded a bespoke biocatalyst-the Ascaris suum malic enzyme carrying mutation R181Q [AsME(R181Q)]. Our first prototype with AsME(R181Q) had an ultra-wide linear range of 50-200 mM l-malate, corresponding to concentrations found in undiluted fruit juices (including grape). Changing the dication from Mg2+ to Mn2+ increased sensitivity five-fold and adding citrate (100 mM) increased it another six-fold, albeit decreasing the linear range to 1-10 mM. To our knowledge, this is the first time an l-malate biosensor with a tuneable combination of sensitivity and linear range has been described. The sensor response was also tested in the presence of various molecules abundant in juices and wines, with ascorbate shown to be a potent interferent. Interference was mitigated by the addition of ascorbate oxidase, allowing for differential measurements on an undiluted, untreated wine sample that corresponded well with commercial l-malate testing kits. Overall, this work demonstrates the power of an enzyme-centric approach for designing electrochemical biosensors with improved operational parameters and novel functionality.


Assuntos
Técnicas Biossensoriais , Vinho , Malatos/análise , Malatos/química , Malatos/metabolismo , Vinho/análise
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa