Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
J Chem Phys ; 160(10)2024 Mar 14.
Artigo em Inglês | MEDLINE | ID: mdl-38482871

RESUMO

We present a detailed computational study on the temperature effect of the dynamics and the interfacial width of unentangled cis-1,4 polybutadiene linear chains confined between strongly attractive alumina layers via long, several µs, atomistic molecular dynamics simulations for a wide range of temperatures (143-473 K). We examine the spatial gradient of the translational segmental dynamics and of an effective local glass temperature (TgL). The latter is found to be much higher than the bulk Tg for the adsorbed layer. It gradually reduces to the bulk Tg at about 2 nm away from the substrate. For distant regions (more than ≈1.2nm), a bulk-like behavior is observed; relaxation times follow a typical Vogel-Fulcher-Tammann dependence for temperatures higher than Tg and an Arrhenius dependence for temperatures below the bulk Tg. On the contrary, the polymer chains at the vicinity of the substrate follow piecewise Arrhenius processes. For temperatures below about the adsorbed layer's TgL, the translational dynamics follows a bulk-like (same activation energy) Arrhenius process. At higher temperatures, there is a low activation energy Arrhenius process, caused by high interfacial friction forces. Finally, we compute the interfacial width, based on both structural and dynamical definitions, as a function of temperature. The absolute value of the interfacial width depends on the actual definition, but, regardless, the qualitative behavior is consistent. The interfacial width peaks around the bulk Tg and contracts for lower and higher temperatures. At bulk Tg, the estimated length of the interfacial width, computed via the various definitions, ranges between 1.0 and 2.7 nm.

2.
RSC Adv ; 13(26): 18014-18024, 2023 Jun 09.
Artigo em Inglês | MEDLINE | ID: mdl-37323454

RESUMO

We provide a comprehensive investigation of intermolecular interactions between atmospheric gaseous pollutants, including CH4, CO, CO2, NO, NO2, SO2, as well as H2O and Agn (n = 1-22) or Aun (n = 1-20) atomic clusters. The optimized geometries of all the systems investigated in our study were determined using density functional theory (DFT) with M06-2X functional and SDD basis set. The PNO-LCCSD-F12/SDD method was used for more accurate single-point energy calculations. Compared to their isolated states, the structures of the Agn and Aun clusters undergo severe deformations upon adsorption of the gaseous species, which become more significant as the size of the clusters decreases. Considering that, in addition to adsorption energy, we have determined the interaction and deformation energy of all the systems. All our calculations consistently show that among the gaseous species examined, SO2 and NO2 exhibit a higher preference for adsorption on both types of clusters, with a slightly higher preference for the Ag clusters compared to the Au clusters, with the SO2/Ag16 system exhibiting the lowest adsorption energy. The type of intermolecular interactions was investigated through wave function analyses, including natural bond orbital (NBO) and quantum theory of atoms in molecules (QTAIM), showing that NO2 and SO2 are chemisorbed on the Agn and Aun atomic clusters, whereas the other gas molecules exhibit a much weaker interaction with them. The reported data can be used as input parameters for molecular dynamics simulations to study the selectivity of atomic clusters towards specific gases under ambient conditions, as well as to design materials that take advantage of the studied intermolecular interactions.

SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa