Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 14 de 14
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Proc Natl Acad Sci U S A ; 119(37): e2202426119, 2022 09 13.
Artigo em Inglês | MEDLINE | ID: mdl-36067319

RESUMO

The cyanobacterial clock presents a unique opportunity to understand the biochemical basis of circadian rhythms. The core oscillator, composed of the KaiA, KaiB, and KaiC proteins, has been extensively studied, but a complete picture of its connection to the physiology of the cell is lacking. To identify previously unknown components of the clock, we used KaiB locked in its active fold as bait in an immunoprecipitation/mass spectrometry approach. We found that the most abundant interactor, other than KaiC, was a putative diguanylate cyclase protein predicted to contain multiple Per-Arnt-Sim (PAS) domains, which we propose to name KidA. Here we show that KidA directly binds to the fold-switched active form of KaiB through its N-terminal PAS domains. We found that KidA shortens the period of the circadian clock both in vivo and in vitro and alters the ability of the clock to entrain to light-dark cycles. The dose-dependent effect of KidA on the clock period could be quantitatively recapitulated by a mathematical model in which KidA stabilizes the fold-switched form of KaiB, favoring rebinding to KaiC. Put together, our results show that the period and amplitude of the clock can be modulated by regulating the access of KaiB to the fold-switched form.


Assuntos
Proteínas de Bactérias , Relógios Circadianos , Peptídeos e Proteínas de Sinalização do Ritmo Circadiano , Ritmo Circadiano , Synechococcus , Proteínas de Bactérias/química , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Peptídeos e Proteínas de Sinalização do Ritmo Circadiano/química , Peptídeos e Proteínas de Sinalização do Ritmo Circadiano/genética , Peptídeos e Proteínas de Sinalização do Ritmo Circadiano/metabolismo , Fosforilação , Domínios Proteicos , Synechococcus/fisiologia
2.
Physiol Mol Biol Plants ; 30(1): 1-16, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-38435853

RESUMO

Chlorophyll b is synthesized from chlorophyllide a, catalyzed by chlorophyllide a oxygenase (CAO). To examine whether reduced chlorophyll b content regulates chlorophyll (Chl) synthesis and photosynthesis, we raised CAO transgenic tobacco plants with antisense CAO expression, which had lower chlorophyll b content and, thus, higher Chl a/b ratio. Further, these plants had (i) lower chlorophyll b and total Chl content, whether they were grown under low or high light; (ii) decreased steady-state levels of chlorophyll biosynthetic intermediates, due, perhaps, to a feedback-controlled reduction in enzyme expressions/activities; (iii) reduced electron transport rates in their intact leaves, and reduced Photosystem (PS) I, PS II and whole chain electron transport activities in their isolated thylakoids; (iv) decreased carbon assimilation in plants grown under low or high light. We suggest that reduced synthesis of chlorophyll b by antisense expression of CAO, acting at the end of Chl biosynthesis pathway, downregulates the chlorophyll b biosynthesis, resulting in decreased Chl b, total chlorophylls and increased Chl a/b. We have previously shown that the controlled up-regulation of chlorophyll b biosynthesis and decreased Chl a/b ratio by over expression of CAO enhance the rates of electron transport and CO2 assimilation in tobacco. Conversely, our data, presented here, demonstrate that-antisense expression of CAO in tobacco, which decreases Chl b biosynthesis and increases Chl a/b ratio, leads to reduced photosynthetic electron transport and carbon assimilation rates, both under low and high light. We conclude that Chl b modulates photosynthesis; its controlled down regulation/ up regulation decreases/ increases light-harvesting, rates of electron transport, and carbon assimilation. Supplementary Information: The online version contains supplementary material available at 10.1007/s12298-023-01395-5.

3.
Nat Commun ; 15(1): 7674, 2024 Sep 03.
Artigo em Inglês | MEDLINE | ID: mdl-39227593

RESUMO

The circadian clock of cyanobacteria, which predicts daily environmental changes, typically includes a standard oscillator consisting of proteins KaiA, KaiB, and KaiC. However, several cyanobacteria have diverse Kai protein homologs of unclear function. In particular, Synechocystis sp. PCC 6803 harbours, in addition to a canonical kaiABC gene cluster (named kaiAB1C1), two further kaiB and kaiC homologs (kaiB2, kaiB3, kaiC2, kaiC3). Here, we identify a chimeric KaiA homolog, named KaiA3, encoded by a gene located upstream of kaiB3. At the N-terminus, KaiA3 is similar to response-regulator receiver domains, whereas its C-terminal domain resembles that of KaiA. Homology analysis shows that a KaiA3-KaiB3-KaiC3 system exists in several cyanobacteria and other bacteria. Using the Synechocystis sp. PCC 6803 homologs, we observe circadian oscillations in KaiC3 phosphorylation in vitro in the presence of KaiA3 and KaiB3. Mutations of kaiA3 affect KaiC3 phosphorylation, leading to growth defects under both mixotrophic and chemoheterotrophic conditions. KaiC1 and KaiC3 exhibit phase-locked free-running phosphorylation rhythms. Deletion of either system (∆kaiAB1C1 or ∆kaiA3B3C3) alters the period of the cellular backscattering rhythm. Furthermore, both oscillators are required to maintain high-amplitude, self-sustained backscatter oscillations with a period of approximately 24 h, indicating their interconnected nature.


Assuntos
Proteínas de Bactérias , Peptídeos e Proteínas de Sinalização do Ritmo Circadiano , Ritmo Circadiano , Synechocystis , Proteínas de Bactérias/metabolismo , Proteínas de Bactérias/genética , Synechocystis/genética , Synechocystis/metabolismo , Synechocystis/fisiologia , Peptídeos e Proteínas de Sinalização do Ritmo Circadiano/genética , Peptídeos e Proteínas de Sinalização do Ritmo Circadiano/metabolismo , Fosforilação , Ritmo Circadiano/genética , Ritmo Circadiano/fisiologia , Relógios Circadianos/genética , Relógios Circadianos/fisiologia , Regulação Bacteriana da Expressão Gênica , Família Multigênica , Cianobactérias/genética , Cianobactérias/metabolismo , Cianobactérias/fisiologia
4.
Plant J ; 69(4): 589-600, 2012 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-21988537

RESUMO

The Arabidopsis ACCELERATED CELL DEATH 2 (ACD2) protein protects cells from programmed cell death (PCD) caused by endogenous porphyrin-related molecules like red chlorophyll catabolite or exogenous protoporphyrin IX. We previously found that during bacterial infection, ACD2, a chlorophyll breakdown enzyme, localizes to both chloroplasts and mitochondria in leaves. Additionally, acd2 cells show mitochondrial dysfunction. In plants with acd2 and ACD2 (+) sectors, ACD2 functions cell autonomously, implicating a pro-death ACD2 substrate as being cell non-autonomous in promoting the spread of PCD. ACD2 targeted solely to mitochondria can reduce the accumulation of an ACD2 substrate that originates in chloroplasts, indicating that ACD2 substrate molecules are likely to be mobile within cells. Two different light-dependent reactive oxygen bursts in mitochondria play prominent and causal roles in the acd2 PCD phenotype. Finally, ACD2 can complement acd2 when targeted to mitochondria or chloroplasts, respectively, as long as it is catalytically active: the ability to bind substrate is not sufficient for ACD2 to function in vitro or in vivo. Together, the data suggest that ACD2 localizes dynamically during infection to protect cells from pro-death mobile substrate molecules, some of which may originate in chloroplasts, but have major effects on mitochondria.


Assuntos
Proteínas Reguladoras de Apoptose/metabolismo , Apoptose/fisiologia , Proteínas de Arabidopsis/metabolismo , Arabidopsis/enzimologia , Mitocôndrias/enzimologia , Oxirredutases/metabolismo , Espécies Reativas de Oxigênio/metabolismo , Proteínas Reguladoras de Apoptose/genética , Arabidopsis/genética , Arabidopsis/fisiologia , Arabidopsis/efeitos da radiação , Proteínas de Arabidopsis/genética , Clorofila/metabolismo , Cloroplastos/enzimologia , Luz , Modelos Biológicos , Mutação , Oxirredutases/genética , Fenótipo , Folhas de Planta/enzimologia , Folhas de Planta/genética , Folhas de Planta/fisiologia , Folhas de Planta/efeitos da radiação , Explosão Respiratória
5.
Plant Physiol ; 159(1): 433-49, 2012 May.
Artigo em Inglês | MEDLINE | ID: mdl-22419827

RESUMO

Chlorophyll b is synthesized by the oxidation of a methyl group on the B ring of a tetrapyrrole molecule to a formyl group by chlorophyllide a oxygenase (CAO). The full-length CAO from Arabidopsis (Arabidopsis thaliana) was overexpressed in tobacco (Nicotiana tabacum) that grows well at light intensities much higher than those tolerated by Arabidopsis. This resulted in an increased synthesis of glutamate semialdehyde, 5-aminolevulinic acid, magnesium-porphyrins, and chlorophylls. Overexpression of CAO resulted in increased chlorophyll b synthesis and a decreased chlorophyll a/b ratio in low light-grown as well as high light-grown tobacco plants; this effect, however, was more pronounced in high light. The increased potential of the protochlorophyllide oxidoreductase activity and chlorophyll biosynthesis compensated for the usual loss of chlorophylls in high light. Increased chlorophyll b synthesis in CAO-overexpressed plants was accompanied not only by an increased abundance of light-harvesting chlorophyll proteins but also of other proteins of the electron transport chain, which led to an increase in the capture of light as well as enhanced (40%-80%) electron transport rates of photosystems I and II at both limiting and saturating light intensities. Although the quantum yield of carbon dioxide fixation remained unchanged, the light-saturated photosynthetic carbon assimilation, starch content, and dry matter accumulation increased in CAO-overexpressed plants grown in both low- and high-light regimes. These results demonstrate that controlled up-regulation of chlorophyll b biosynthesis comodulates the expression of several thylakoid membrane proteins that increase both the antenna size and the electron transport rates and enhance carbon dioxide assimilation, starch content, and dry matter accumulation.


Assuntos
Clorofila/biossíntese , Luz , Nicotiana/enzimologia , Oxigenases/metabolismo , Fotossíntese , Ácido Aminolevulínico/metabolismo , Arabidopsis/genética , Arabidopsis/metabolismo , Dióxido de Carbono/metabolismo , Transporte de Elétrons , Ativação Enzimática , Regulação da Expressão Gênica de Plantas , Genes de Plantas , Oxigenases/genética , Fenótipo , Complexo de Proteína do Fotossistema I/genética , Complexo de Proteína do Fotossistema I/metabolismo , Complexo de Proteína do Fotossistema II/genética , Complexo de Proteína do Fotossistema II/metabolismo , Folhas de Planta/enzimologia , Folhas de Planta/genética , Folhas de Planta/efeitos da radiação , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Plantas Geneticamente Modificadas/enzimologia , Plantas Geneticamente Modificadas/genética , Plantas Geneticamente Modificadas/efeitos da radiação , Amido/metabolismo , Proteínas das Membranas dos Tilacoides/genética , Proteínas das Membranas dos Tilacoides/metabolismo , Nicotiana/genética , Nicotiana/efeitos da radiação , Transgenes
6.
Cell Rep ; 32(7): 108032, 2020 08 18.
Artigo em Inglês | MEDLINE | ID: mdl-32814039

RESUMO

An emerging principle of cell biology is the regulated conversion of macromolecules between soluble and condensed states. To screen for such regulation of the cyanobacterial proteome, we use quantitative mass spectrometry to identify proteins that change solubility during the day-night cycle. We find a set of night-insoluble proteins that includes many enzymes in essential metabolic pathways. Using time-lapse microscopy and isotope labeling, we show that these proteins reversibly transition between punctate structures at night and a soluble state during the day without substantial degradation. We find that the cyanobacterial circadian clock regulates the kinetics of puncta formation during the night and that the appearance of puncta indicates the metabolic status of the cell. Reversible condensation of specific enzymes is thus a regulated response to the day-night cycle and may reflect a general bacterial strategy used in fluctuating growth conditions.


Assuntos
Cianobactérias/genética , Conformação Proteica
7.
Cell Syst ; 9(5): 459-465.e6, 2019 Nov 27.
Artigo em Inglês | MEDLINE | ID: mdl-31563474

RESUMO

Living organisms need to be sensitive to a changing environment while also ignoring uninformative environmental fluctuations. Here, we argue that living cells can navigate these conflicting demands by dynamically tuning their environmental sensitivity. We analyze the circadian clock in Synechococcus elongatus, showing that clock-metabolism coupling can detect mismatch between clock predictions and the day-night light cycle, temporarily raise the clock's sensitivity to light changes, and thus re-entraining faster. We find analogous behavior in recent experiments on switching between slow and fast osmotic-stress-response pathways in yeast. In both cases, cells can raise their sensitivity to new external information in epochs of frequent challenging stress, much like a Kalman filter with adaptive gain in signal processing. Our work suggests a new class of experiments that probe the history dependence of environmental sensitivity in biophysical sensing mechanisms.


Assuntos
Relógios Circadianos/fisiologia , Ritmo Circadiano/fisiologia , Synechococcus/fisiologia , Teorema de Bayes , Fenômenos Biofísicos/fisiologia , Luz , Modelos Biológicos
8.
Protoplasma ; 253(3): 747-752, 2016 May.
Artigo em Inglês | MEDLINE | ID: mdl-27001427

RESUMO

Plants in response to different environmental cues need to modulate the expression of nuclear and chloroplast genomes that are in constant communication. To understand the signals that are responsible for inter-organellar communication, levulinic acid (LA), an inhibitor of 5-aminolevulinic acid dehydratase, was used to suppress the synthesis of pyrrole-derived tetrapyrroles chlorophylls. Although, it does not specifically inhibit carotenoid biosynthesis enzymes, LA reduced the carotenoid contents during photomorphogenesis of etiolated Arabidopsis seedlings. The expression of nuclear genes involved in carotenoid biosynthesis, i.e., geranylgeranyl diphosphate synthase, phytoene synthase, and phytoene desaturase, was downregulated in LA-treated seedlings. Similarly, the transcript abundance of nuclear genes, i.e., Lhcb1, PsbO, and RcbS, coding for chloroplastic proteins was severely attenuated in LA-treated samples. In contrast, LA treatment did not affect the transcript abundance of chalcone synthase, a marker gene for cytoplasm, and ß-ATP synthase, a marker gene for mitochondria. This demonstrates the retrograde signaling from chloroplast to nucleus to suppress chloroplastic proteins during impaired chloroplast development. However, under identical conditions in LA-treated tetrapyrrole-deficient gun5 mutant, retrograde signal continued. The tetrapyrrole biosynthesis inhibitor LA suppressed formation of all tetrapyrroles both in WT and gun5. This rules out the role of tetrapyrroles as signaling molecules in WT and gun5. The removal of LA from the Arabidopsis seedlings restored the chlorophyll and carotenoid contents and expression of nuclear genes coding for chloroplastic proteins involved in chloroplast biogenesis. Therefore, LA could be used to modulate chloroplast biogenesis at a desired phase of chloroplast development.


Assuntos
Proteínas de Arabidopsis/genética , Arabidopsis/metabolismo , Carotenoides/metabolismo , Cloroplastos/metabolismo , Liases/genética , Aciltransferases/genética , Aciltransferases/metabolismo , Arabidopsis/efeitos dos fármacos , Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Clorofila/metabolismo , Cloroplastos/genética , Regulação da Expressão Gênica de Plantas/efeitos dos fármacos , Ácidos Levulínicos/farmacologia , Complexos de Proteínas Captadores de Luz/genética , Complexos de Proteínas Captadores de Luz/metabolismo , Liases/metabolismo , Mutação , Oxirredutases/genética , Oxirredutases/metabolismo , Plântula/efeitos dos fármacos , Plântula/genética , Plântula/metabolismo , Transdução de Sinais/efeitos dos fármacos , Transdução de Sinais/genética , Tetrapirróis/metabolismo
9.
Cell Rep ; 13(11): 2362-2367, 2015 Dec 22.
Artigo em Inglês | MEDLINE | ID: mdl-26686627

RESUMO

Circadian clocks are oscillatory systems that allow organisms to anticipate rhythmic changes in the environment. Several studies have shown that circadian clocks are connected to metabolism, but it is not generally clear whether metabolic signaling is one voice among many that influence the clock or whether metabolic cycling is the major clock synchronizer. To address this question in cyanobacteria, we used a synthetic biology approach to make normally autotrophic cells capable of growth on exogenous sugar. This allowed us to manipulate metabolism independently from light and dark. We found that feeding sugar to cultures blocked the clock-resetting effect of a dark pulse. Furthermore, in the absence of light, the clock efficiently synchronizes to metabolic cycles driven by rhythmic feeding. We conclude that metabolic activity, independent of its source, is the primary clock driver in cyanobacteria.


Assuntos
Relógios Circadianos/fisiologia , Cianobactérias/metabolismo , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Metabolismo dos Carboidratos/fisiologia , Cianobactérias/crescimento & desenvolvimento , Glucose/metabolismo , Luz , Proteínas de Transporte de Monossacarídeos/genética , Proteínas de Transporte de Monossacarídeos/metabolismo
10.
Curr Opin Microbiol ; 18: 90-5, 2014 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-24667330

RESUMO

Cyanobacteria possess the simplest known circadian clock, which presents a unique opportunity to study how rhythms are generated and how input signals from the environment reset the clock time. The kaiABC locus forms the core of the oscillator, and the remarkable ability to reconstitute oscillations using purified KaiABC proteins has allowed researchers to study mechanism using the tools of quantitative biochemistry. Autotrophic cyanobacteria experience major shifts in metabolism following a light-dark transition, and recent work suggests that input mechanisms that couple the day-night cycle to the clock involve energy and redox metabolites acting directly on clock proteins. We offer a summary of the current state of knowledge in this system and present a perspective for future lines of investigation.


Assuntos
Relógios Biológicos , Ritmo Circadiano , Cianobactérias/fisiologia , Metabolismo , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Peptídeos e Proteínas de Sinalização do Ritmo Circadiano/genética , Peptídeos e Proteínas de Sinalização do Ritmo Circadiano/metabolismo , Cianobactérias/efeitos da radiação , Escuridão , Luz
11.
Curr Biol ; 24(16): 1934-8, 2014 Aug 18.
Artigo em Inglês | MEDLINE | ID: mdl-25127221

RESUMO

Circadian clocks are oscillatory systems that schedule daily rhythms of organismal behavior. The ability of the clock to reset its phase in response to external signals is critical for proper synchronization with the environment. In the model clock from cyanobacteria, the KaiABC proteins that comprise the core oscillator are directly sensitive to metabolites. Reduced ATP/ADP ratio and oxidized quinones cause clock phase shifts in vitro. However, it is unclear what determines the metabolic response of the cell to darkness and thus the magnitude of clock resetting. We show that the cyanobacterial circadian clock generates a rhythm in metabolism that causes cells to accumulate glycogen in anticipation of nightfall. Mutation of the histidine kinase CikA creates an insensitive clock-input phenotype by misregulating clock output genome wide, leading to overaccumulation of glycogen and subsequently high ATP in the dark. Conversely, we show that disruption of glycogen metabolism results in low ATP in the dark and makes the clock hypersensitive to dark pulses. The observed changes in cellular energy are sufficient to recapitulate phase-shifting phenotypes in an in vitro model of the clock. Our results show that clock-input phenotypes can arise from metabolic dysregulation and illustrate a framework for circadian biology where clock outputs feed back through metabolism to control input mechanisms.


Assuntos
Relógios Biológicos , Ritmo Circadiano , Metabolismo Energético , Glicogênio/metabolismo , Synechococcus/fisiologia , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Peptídeos e Proteínas de Sinalização do Ritmo Circadiano/genética , Peptídeos e Proteínas de Sinalização do Ritmo Circadiano/metabolismo , Mutação , Análise de Sequência com Séries de Oligonucleotídeos , Synechococcus/genética
12.
PLoS One ; 6(10): e26532, 2011.
Artigo em Inglês | MEDLINE | ID: mdl-22031838

RESUMO

Light absorbed by colored intermediates of chlorophyll biosynthesis is not utilized in photosynthesis; instead, it is transferred to molecular oxygen, generating singlet oxygen ((1)O(2)). As there is no enzymatic detoxification mechanism available in plants to destroy (1)O(2), its generation should be minimized. We manipulated the concentration of a major chlorophyll biosynthetic intermediate i.e., protochlorophyllide in Arabidopsis by overexpressing the light-inducible protochlorophyllide oxidoreductase C (PORC) that effectively phototransforms endogenous protochlorophyllide to chlorophyllide leading to minimal accumulation of the photosensitizer protochlorophyllide in light-grown plants. In PORC overexpressing (PORCx) plants exposed to high-light, the (1)O(2) generation and consequent malonedialdehyde production was minimal and the maximum quantum efficiency of photosystem II remained unaffected demonstrating that their photosynthetic apparatus and cellular organization were intact. Further, PORCx plants treated with 5-aminolevulinicacid when exposed to light, photo-converted over-accumulated protochlorophyllide to chlorophyllide, reduced the generation of (1)O(2) and malonedialdehyde production and reduced plasma membrane damage. So PORCx plants survived and bolted whereas, the 5-aminolevulinicacid-treated wild-type plants perished. Thus, overexpression of PORC could be biotechnologically exploited in crop plants for tolerance to (1)O(2)-induced oxidative stress, paving the use of 5-aminolevulinicacid as a selective commercial light-activated biodegradable herbicide. Reduced protochlorophyllide content in PORCx plants released the protochlorophyllide-mediated feed-back inhibition of 5-aminolevulinicacid biosynthesis that resulted in higher 5-aminolevulinicacid production. Increase of 5-aminolevulinicacid synthesis upregulated the gene and protein expression of several downstream chlorophyll biosynthetic enzymes elucidating a regulatory net work of expression of genes involved in 5-aminolevulinicacid and tetrapyrrole biosynthesis.


Assuntos
Proteínas de Arabidopsis/metabolismo , Arabidopsis/metabolismo , Oxirredutases atuantes sobre Doadores de Grupo CH-CH/metabolismo , Plantas Geneticamente Modificadas/metabolismo , Aciltransferases/metabolismo , Antocianinas/metabolismo , Arabidopsis/efeitos dos fármacos , Arabidopsis/genética , Proteínas de Arabidopsis/genética , Western Blotting , Clorofila/metabolismo , Regulação da Expressão Gênica de Plantas/genética , Regulação da Expressão Gênica de Plantas/fisiologia , Herbicidas/farmacologia , Malondialdeído/metabolismo , Oxirredutases atuantes sobre Doadores de Grupo CH-CH/genética , Fenótipo , Folhas de Planta/genética , Folhas de Planta/metabolismo , Plantas Geneticamente Modificadas/efeitos dos fármacos , Plantas Geneticamente Modificadas/genética , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Oxigênio Singlete/metabolismo
13.
Biochem Biophys Res Commun ; 326(2): 466-71, 2005 Jan 14.
Artigo em Inglês | MEDLINE | ID: mdl-15582600

RESUMO

Chlorophyllide a oxygenase (CAO) that converts chlorophyllide a to chlorophyllide b was overexpressed in tobacco to increase chlorophyll (Chl) b biosynthesis and alter the Chl a/b ratio. Transgenic plants along with their wild-type cultivars were grown in low and high light intensities. In low light there was 20% increase in chlorophyll b contents in transgenic plants, which resulted in 16% reduction in the Chl a/b ratio. In high light, total Chl contents were 31% higher in transgenic plants than those of wild type. The increase in Chl a was 19% and that of Chl b was 72% leading to 31% decline of Chl a/b ratio. The increase in Chl b contents was accompanied by enhanced CAO expression that was highly pronounced in low light. As compared to low light, in high light Lhcb1 and Chl a/b transcripts abundance was significantly increased in transgenic plants suggesting a close relationship between Chl b synthesis and cab gene expression. However, there was a small increase in expression of LHCII proteins, which did not correspond to 72% increase in Chl b content in transgenic line, implying that LHCPII has the ability to bind more Chl b molecules.


Assuntos
Clorofila/biossíntese , Luz , Nicotiana/genética , Nicotiana/metabolismo , Oxigenases/metabolismo , Arabidopsis/genética , Northern Blotting , Western Blotting , Clorofila A , Expressão Gênica , Vetores Genéticos/genética , Complexos de Proteínas Captadores de Luz/metabolismo , Oxigenases/genética , Reação em Cadeia da Polimerase , RNA de Plantas/genética , RNA de Plantas/metabolismo , Nicotiana/enzimologia , Nicotiana/efeitos da radiação , Transformação Genética
14.
Biochem Biophys Res Commun ; 291(4): 921-4, 2002 Mar 08.
Artigo em Inglês | MEDLINE | ID: mdl-11866453

RESUMO

In Arabidopsis thaliana Por C has been identified only on sequence homology to that of por A and por B. To demonstrate its catalytic function Arabidopsis thaliana protochlorophyllide oxidoreductase C gene (por c) that codes for the mature part of POR C protein having 335 amino acids was expressed in Escherchia coli cells. The POR C enzyme in the presence of NADPH and protochlorophyllide when incubated in dark formed a ternary complex. When it was excited at 433 nm, it had a fluorescence emission peak at 636 nm. After illumination with actinic cool white fluorescent light, a peak at 673 nm due to chlorophyllide gradually increased with concomitant decrease of 636 nm emission, demonstrating the gradual phototransformation of protochlorophyllide to chlorophyllide. The significance of differential por gene expression in light and dark among different species is discussed.


Assuntos
Arabidopsis/enzimologia , Oxirredutases atuantes sobre Doadores de Grupo CH-CH , Oxirredutases/metabolismo , Catálise , Eletroforese em Gel de Poliacrilamida , Escherichia coli/genética , Fluorescência , Immunoblotting , Oxirredutases/química , Oxirredutases/imunologia , Protoclorifilida/metabolismo
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa