Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 20
Filtrar
1.
Proc Natl Acad Sci U S A ; 117(51): 32370-32379, 2020 12 22.
Artigo em Inglês | MEDLINE | ID: mdl-33288723

RESUMO

The design of modified oligonucleotides that combine in one molecule several therapeutically beneficial properties still poses a major challenge. Recently a new type of modified mesyl phosphoramidate (or µ-) oligonucleotide was described that demonstrates high affinity to RNA, exceptional nuclease resistance, efficient recruitment of RNase H, and potent inhibition of key carcinogenesis processes in vitro. Herein, using a xenograft mouse tumor model, it was demonstrated that microRNA miR-21-targeted µ-oligonucleotides administered in complex with folate-containing liposomes dramatically inhibit primary tumor growth via long-term down-regulation of miR-21 in tumors and increase in biosynthesis of miR-21-regulated tumor suppressor proteins. This antitumoral effect is superior to the effect of the corresponding phosphorothioate. Peritumoral administration of µ-oligonucleotide results in its rapid distribution and efficient accumulation in the tumor. Blood biochemistry and morphometric studies of internal organs revealed no pronounced toxicity of µ-oligonucleotides. This new oligonucleotide class provides a powerful tool for antisense technology.


Assuntos
Amidas/química , Antineoplásicos/farmacologia , MicroRNAs/genética , Oligonucleotídeos Antissenso/química , Oligonucleotídeos Antissenso/farmacologia , Ácidos Fosfóricos/química , Animais , Antineoplásicos/química , Antineoplásicos/farmacocinética , Linhagem Celular Tumoral , Regulação Neoplásica da Expressão Gênica/efeitos dos fármacos , Masculino , Melanoma/genética , Melanoma/patologia , Camundongos SCID , Terapia de Alvo Molecular , Oligonucleotídeos Antissenso/farmacocinética , Distribuição Tecidual , Ensaios Antitumorais Modelo de Xenoenxerto
2.
Inorg Chem ; 61(4): 2105-2118, 2022 Jan 31.
Artigo em Inglês | MEDLINE | ID: mdl-35029379

RESUMO

A series of heteroleptic square-planar Pt and Pd complexes with bis(diisopropylphenyl) iminoacenaphtene (dpp-Bian) and Cl, 1,3-dithia-2-thione-4,5-dithiolate (dmit), or 1,3-dithia-2-thione-4,5-diselenolate (dsit) ligands have been prepared and characterized by spectroscopic techniques, elemental analysis, X-ray diffraction analysis, and cyclic voltammetry (CV). The intermolecular noncovalent interactions in the crystal structures were assessed by density functional theory (DFT) calculations. The anticancer activity of Pd complexes in breast cancer cell lines was limited by their solubility. Pd(dpp-Bian) complexes with dmit and dsit ligands as well as an uncoordinated dpp-Bian ligand were devoid of cytotoxicity, while the [Pd(dpp-Bian)Cl2] complex was cytotoxic. On the contrary, all Pt(dpp-Bian) complexes demonstrated anticancer activity in a low micromolar concentration range, which was 8-20 times higher than the activity of cisplatin, and up to 2.5-fold selectivity toward cancer cells over healthy fibroblasts. The presence of a redox-active dpp-Bian ligand in Pt and Pd complexes resulted in the induction of reactive oxygen species (ROS) in cancer cells. In addition, these complexes were able to intercalate into DNA, indicating the dual mechanism of action.


Assuntos
Cisplatino
3.
Int J Mol Sci ; 23(12)2022 Jun 12.
Artigo em Inglês | MEDLINE | ID: mdl-35743015

RESUMO

The selective degradation of disease-associated microRNA is promising for the development of new therapeutic approaches. In this study, we engineered a series of bulge-loop-forming oligonucleotides conjugated with catalytic peptide [(LeuArg)2Gly]2 (BC-miRNases) capable of recognizing and destroying oncogenic miR-17 and miR-21. The principle behind the design of BC-miRNase is the cleavage of miRNA at a three-nucleotide bulge loop that forms in the central loop region, which is essential for the biological competence of miRNA. A thorough study of mono- and bis-BC-miRNases (containing one or two catalytic peptides, respectively) revealed that: (i) the sequence of miRNA bulge loops and neighbouring motifs are of fundamental importance for efficient miRNA cleavage (i.e., motifs containing repeating pyrimidine-A bonds are more susceptible to cleavage); (ii) the incorporation of the second catalytic peptide in the same molecular scaffold increases the potency of BC-miRNase, providing a complete degradation of miR-17 within 72 h; (iii) the synergetic co-operation of BC-miRNases with RNase H accelerates the rate of miRNA catalytic cleavage by both the conjugate and the enzyme. Such synergy allows the rapid destruction of constantly emerging miRNA to maintain sufficient knockdown and achieve a desired therapeutic effect.


Assuntos
MicroRNAs , Carcinogênese , Humanos , MicroRNAs/genética , MicroRNAs/metabolismo , Conformação de Ácido Nucleico , Oligonucleotídeos/química , Peptídeos/química
4.
Molecules ; 26(6)2021 Mar 19.
Artigo em Inglês | MEDLINE | ID: mdl-33808835

RESUMO

RNA-targeting therapeutics require highly efficient sequence-specific devices capable of RNA irreversible degradation in vivo. The most developed methods of sequence-specific RNA cleavage, such as siRNA or antisense oligonucleotides (ASO), are currently based on recruitment of either intracellular multi-protein complexes or enzymes, leaving alternative approaches (e.g., ribozymes and DNAzymes) far behind. Recently, site-selective artificial ribonucleases combining the oligonucleotide recognition motifs (or their structural analogues) and catalytically active groups in a single molecular scaffold have been proven to be a great competitor to siRNA and ASO. Using the most efficient catalytic groups, utilising both metal ion-dependent (Cu(II)-2,9-dimethylphenanthroline) and metal ion-free (Tris(2-aminobenzimidazole)) on the one hand and PNA as an RNA recognising oligonucleotide on the other, allowed site-selective artificial RNases to be created with half-lives of 0.5-1 h. Artificial RNases based on the catalytic peptide [(ArgLeu)2Gly]2 were able to take progress a step further by demonstrating an ability to cleave miRNA-21 in tumour cells and provide a significant reduction of tumour growth in mice.


Assuntos
Sequência de Bases , DNA Catalítico/química , Oligonucleotídeos/química , Clivagem do RNA , RNA/química , Ribonucleases/química
5.
Molecules ; 25(10)2020 May 25.
Artigo em Inglês | MEDLINE | ID: mdl-32466298

RESUMO

Irreversible destruction of disease-associated regulatory RNA sequences offers exciting opportunities for safe and powerful therapeutic interventions against human pathophysiology. In 2017, for the first time we introduced miRNAses-miRNA-targeted conjugates of a catalytic peptide and oligonucleotide capable of cleaving an miRNA target. Herein, we report the development of Dual miRNases against oncogenic miR-21, miR-155, miR-17 and miR-18a, each containing the catalytic peptide placed in-between two short miRNA-targeted oligodeoxyribonucleotide recognition motifs. Substitution of adenines with 2-aminoadenines in the sequence of oligonucleotide "shoulders" of the Dual miRNase significantly enhanced the efficiency of hybridization with the miRNA target. It was shown that sequence-specific cleavage of the target by miRNase proceeded metal-independently at pH optimum 5.5-7.5 with an efficiency varying from 15% to 85%, depending on the miRNA sequence. A distinct advantage of the engineered nucleases is their ability to additionally recruit RNase H and cut miRNA at three different locations. Such cleavage proceeds at the central part by Dual miRNase, and at the 5'- and 3'-regions by RNase H, which significantly increases the efficiency of miRNA degradation. Due to increased activity at lowered pH Dual miRNases could provide an additional advantage in acidic tumor conditions and may be considered as efficient tumor-selective RNA-targeted therapeutic.


Assuntos
MicroRNAs/metabolismo , Oligonucleotídeos/metabolismo , Peptídeos/metabolismo , Ribonucleases/metabolismo , 2-Aminopurina/análogos & derivados , 2-Aminopurina/química , 2-Aminopurina/metabolismo , Sequência de Bases , Biocatálise , Domínio Catalítico , Humanos , Concentração de Íons de Hidrogênio , Oligonucleotídeos/síntese química , Peptídeos/síntese química , Estabilidade de RNA , Ribonucleases/síntese química
6.
Molecules ; 25(16)2020 Aug 11.
Artigo em Inglês | MEDLINE | ID: mdl-32796768

RESUMO

Biological activity of antisense oligonucleotides (asON), especially those with a neutral backbone, is often attenuated by poor cellular accumulation. In the present proof-of-concept study, we propose a novel delivery system for asONs which implies the delivery of modified antisense oligonucleotides by so-called transport oligonucleotides (tON), which are oligodeoxyribonucleotides complementary to asON conjugated with hydrophobic dodecyl moieties. Two types of tONs, bearing at the 5'-end up to three dodecyl residues attached through non-nucleotide inserts (TD series) or anchored directly to internucleotidic phosphate (TP series), were synthesized. tONs with three dodecyl residues efficiently delivered asON to cells without any signs of cytotoxicity and provided a transfection efficacy comparable to that achieved using Lipofectamine 2000. We found that, in the case of tON with three dodecyl residues, some tON/asON duplexes were excreted from the cells within extracellular vesicles at late stages of transfection. We confirmed the high efficacy of the novel and demonstrated that MDR1 mRNA targeted asON delivered by tON with three dodecyl residues significantly reduced the level of P-glycoprotein and increased the sensitivity of KB-8-5 human carcinoma cells to vinblastine. The obtained results demonstrate the efficacy of lipophilic oligonucleotide carriers and shows they are potentially capable of intracellular delivery of any kind of antisense oligonucleotides.


Assuntos
Antineoplásicos Fitogênicos/farmacologia , Sistemas de Liberação de Medicamentos , Neoplasias/tratamento farmacológico , Oligonucleotídeos Antissenso/genética , RNA Mensageiro/antagonistas & inibidores , Vimblastina/farmacologia , Subfamília B de Transportador de Cassetes de Ligação de ATP/antagonistas & inibidores , Subfamília B de Transportador de Cassetes de Ligação de ATP/genética , Antineoplásicos Fitogênicos/administração & dosagem , Antineoplásicos Fitogênicos/química , Humanos , Neoplasias/genética , Neoplasias/patologia , RNA Mensageiro/genética , Células Tumorais Cultivadas , Vimblastina/administração & dosagem , Vimblastina/química
8.
Biomaterials ; 309: 122604, 2024 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-38733658

RESUMO

Rationally-engineered functional biomaterials offer the opportunity to interface with complex biology in a predictive, precise, yet dynamic way to reprogram their behaviour and correct shortcomings. Success here may lead to a desired therapeutic effect against life-threatening diseases, such as cancer. Here, we engineered "Crab"-like artificial ribonucleases through coupling of peptide and nucleic acid building blocks, capable of operating alongside and synergistically with intracellular enzymes (RNase H and AGO2) for potent destruction of oncogenic microRNAs. "Crab"-like configuration of two catalytic peptides ("pincers") flanking the recognition oligonucleotide was instrumental here in providing increased catalytic turnover, leading to ≈30-fold decrease in miRNA half-life as compared with that for "single-pincer" conjugates. Dynamic modeling of miRNA cleavage illustrated how such design enabled "Crabs" to drive catalytic turnover through simultaneous attacks at different locations of the RNA-DNA heteroduplex, presumably by producing smaller cleavage products and by providing toeholds for competitive displacement by intact miRNA strands. miRNA cleavage at the 5'-site, spreading further into double-stranded region, likely provided a synergy for RNase H1 through demolition of its loading region, thus facilitating enzyme turnover. Such synergy was critical for sustaining persistent disposal of continually-emerging oncogenic miRNAs. A single exposure to the best structural variant (Crab-p-21) prior to transplantation into mice suppressed their malignant properties and reduced primary tumor volume (by 85 %) in MCF-7 murine xenograft models.


Assuntos
MicroRNAs , MicroRNAs/genética , MicroRNAs/metabolismo , Animais , Humanos , Feminino , Camundongos , Linhagem Celular Tumoral , Ribonuclease H/metabolismo , Proteínas Argonautas/metabolismo , Camundongos Nus , Neoplasias/genética , Neoplasias/patologia , Neoplasias/metabolismo , Ribonucleases/metabolismo
9.
Cancers (Basel) ; 14(18)2022 Sep 09.
Artigo em Inglês | MEDLINE | ID: mdl-36139555

RESUMO

Rational combinations of sequence-specific inhibitors of pro-oncogenic miRNAs can efficiently interfere with specific tumor survival pathways, offering great promise for targeted therapy of oncological diseases. Herein, we uncovered the potential of multicomponent therapy by double or triple combinations of highly potent mesyl phosphoramidate (µ) antisense oligodeoxynucleotides targeted to three proven pro-oncogenic microRNAs-miR-17, miR-21, and miR-155. A strong synergism in the inhibition of proliferation and migration of B16 melanoma cells was demonstrated in vitro for pairs of µ-oligonucleotides, which resulted in vivo in profound inhibition (up to 85%) of lung metastases development after intravenous injection of µ-oligonucleotide-transfected B16 cells in mice. A clear benefit of µ-21-ON/µ-17-ON and µ-17-ON/µ-155-ON/µ-21-ON combination antitumor therapy was shown for the lymphosarcoma RLS40 solid tumor model. In vivo administration of the µ-17-ON/µ-155-ON/µ-21-ON cocktail into RLS40-bearing mice elicited fourfold delay of tumor growth as a result of strong inhibition of tumor mitotic activity. It was discovered that the cocktail of µ-21-ON/µ-17-ON/µ-155-ON led to a twofold decrease in total destructive changes in murine liver, which indicates both the reduction in toxic tumor burden and the absence of specific toxicity of the proposed therapy.

10.
Mol Ther Nucleic Acids ; 27: 211-226, 2022 Mar 08.
Artigo em Inglês | MEDLINE | ID: mdl-34976439

RESUMO

Antisense gapmer oligonucleotides containing phosphoryl guanidine (PG) groups, e.g., 1,3-dimethylimidazolidin-2-imine, at three to five internucleotidic positions adjacent to the 3' and 5' ends were prepared via the Staudinger chemistry, which is compatible with conditions of standard automated solid-phase phosphoramidite synthesis for phosphodiester and, notably, phosphorothioate linkages, and allows one to design a variety of gapmeric structures with alternating linkages, and deoxyribose or 2'-O-methylribose backbone. PG modifications increased nuclease resistance in serum-containing medium for more than 21 days. Replacing two internucleotidic phosphates by PG groups in phosphorothioate-modified oligonucleotides did not decrease their cellular uptake in the absence of lipid carriers. Increasing the number of PG groups from two to seven per oligonucleotide reduced their ability to enter the cells in the carrier-free mode. Cationic liposomes provided similar delivery efficiency of both partially PG-modified and unmodified oligonucleotides. PG-gapmers were designed containing three to four PG groups at both wings and a central "window" of seven deoxynucleotides with either phosphodiester or phosphorothioate linkages targeted to MDR1 mRNA providing multiple drug resistance of tumor cells. Gapmers efficiently silenced MDR1 mRNA and restored the sensitivity of tumor cells to chemotherapeutics. Thus, PG-gapmers can be considered as novel, promising types of antisense oligonucleotides for targeting biologically relevant RNAs.

11.
BMC Cancer ; 10: 204, 2010 May 14.
Artigo em Inglês | MEDLINE | ID: mdl-20470373

RESUMO

BACKGROUND: One of the main obstacles for successful cancer polychemotherapy is multiple drug resistance phenotype (MDR) acquired by tumor cells. Currently, RNA interference represents a perspective strategy to overcome MDR via silencing the genes involved in development of this deleterious phenotype (genes of ABC transporters, antiapoptotic genes, etc.). METHODS: In this study, we used the siRNAs targeted to mdr1b, mdr1a, and bcl-2 mRNAs to reverse the MDR of tumors and increase tumor sensitivity to chemotherapeutics. The therapy consisting in ex vivo or in vivo application of mdr1b/1a siRNA followed by cyclophosphamide administration was studied in the mice bearing RLS40 lymphosarcoma, displaying high resistance to a wide range of cytostatics. RESULTS: Our data show that a single application of mdr1b/1a siRNA followed by treatment with conventionally used cytostatics results in more than threefold decrease in tumor size as compared with the control animals receiving only cytostatics. CONCLUSIONS: In perspective, mdr1b/1a siRNA may become a well-reasoned adjuvant tool in the therapy of MDR malignancies.


Assuntos
Subfamília B de Transportador de Cassetes de Ligação de ATP/genética , Antineoplásicos Alquilantes/farmacologia , Ciclofosfamida/farmacologia , Resistencia a Medicamentos Antineoplásicos/genética , Terapia Genética/métodos , Linfoma não Hodgkin/terapia , Interferência de RNA , RNA Interferente Pequeno/metabolismo , Animais , Regulação Neoplásica da Expressão Gênica , Genótipo , Linfoma não Hodgkin/tratamento farmacológico , Linfoma não Hodgkin/genética , Linfoma não Hodgkin/metabolismo , Linfoma não Hodgkin/patologia , Masculino , Camundongos , Camundongos Endogâmicos CBA , Fenótipo , RNA Mensageiro/metabolismo , Fatores de Tempo , Transfecção , Carga Tumoral , Células Tumorais Cultivadas , Membro 4 da Subfamília B de Transportadores de Cassetes de Ligação de ATP
12.
Front Pharmacol ; 10: 488, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31156429

RESUMO

The search for effective strategies to inhibit tumorigenesis remains one of the most relevant scientific challenges. Among the most promising approaches is the direct modulation of the function of short non-coding RNAs, particularly miRNAs. These molecules are propitious targets for anticancer therapy, since they perform key regulatory roles in a variety of signaling cascades related to cell proliferation, apoptosis, migration, and invasion. The development of pathological states is often associated with deregulation of miRNA expression. The present review describes in detail the strategies aimed at modulating miRNA activity that invoke antisense oligonucleotide construction, such as small RNA zippers, miRNases (miRNA-targeted artificial ribonucleases), miRNA sponges, miRNA masks, anti-miRNA oligonucleotides, and synthetic miRNA mimics. The broad impact of developed miRNA-based therapeutics on the various events of tumorigenesis is also discussed. Above all, the focus of this review is to evaluate the results of the combined application of different miRNA-based agents and chemotherapeutic drugs for the inhibition of tumor development. Many studies indicate a considerable increase in the efficacy of anticancer therapy as a result of additive or synergistic effects of simultaneously applied therapies. Different drug combinations, such as a cocktail of antisense oligonucleotides or multipotent miRNA sponges directed at several oncogenic microRNAs belonging to the same/different miRNA families, a mixture of anti-miRNA oligonucleotides and cytostatic drugs, and a combination of synthetic miRNA mimics, have a more complex and profound effect on the various events of tumorigenesis as compared with treatment with a single miRNA-based agent or chemotherapeutic drug. These data provide strong evidence that the simultaneous application of several distinct strategies aimed at suppressing different cellular processes linked to tumorigenesis is a promising approach for cancer therapy.

13.
Front Pharmacol ; 10: 879, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31456683

RESUMO

Control of the expression of oncogenic small non-coding RNAs, notably microRNAs (miRNAs), is an attractive therapeutic approach. We report a design platform for catalytic knockdown of miRNA targets with artificial, sequence-specific ribonucleases. miRNases comprise a peptide [(LeuArg)2Gly]2 capable of RNA cleavage conjugated to the miRNA-targeted oligodeoxyribonucleotide, which becomes nuclease-resistant within the conjugate design, without resort to chemically modified nucleotides. Our data presented here showed for the first time a truly catalytic character of our miR-21-miRNase and its ability to cleave miR-21 in a multiple catalytic turnover mode. We demonstrate that miRNase targeted to miR-21 (miR-21-miRNase) knocked down malignant behavior of tumor cells, including induction of apoptosis, inhibition of cell invasiveness, and retardation of tumor growth, which persisted on transplantation into mice of tumor cells treated once with miR-21-miRNase. Crucially, we discover that the high biological activity of miR-21-miRNase can be directly related not only to its truly catalytic sequence-specific cleavage of miRNA but also to its ability to recruit the non-sequence specific RNase H found in most cells to elevate catalytic turnover further. miR-21-miRNase worked synergistically even with low levels of RNase H. Estimated degradation in the presence of RNase H exceeded 103 miRNA target molecules per hour for each miR-21-miRNase molecule, which provides the potency to minimize delivery requirements to a few molecules per cell. In contrast to the comparatively high doses required for the simple steric block of antisense oligonucleotides, truly catalytic inactivation of miRNA offers more effective, irreversible, and persistent suppression of many copy target sequences. miRNase design can be readily adapted to target other pathogenic microRNAs overexpressed in many disease states.

14.
Oncotarget ; 8(45): 78796-78810, 2017 Oct 03.
Artigo em Inglês | MEDLINE | ID: mdl-29108266

RESUMO

Recently, pancreatic RNase A was shown to inhibit tumor and metastasis growth that accompanied by global alteration of miRNA profiles in the blood and tumor tissue (Mironova et al., 2013). Here, we performed a whole transcriptome analysis of murine Lewis lung carcinoma (LLC) after treatment of tumor-bearing mice with RNase A. We identified 966 differentially expressed transcripts in LLC tumors, of which 322 were upregulated and 644 were downregulated after RNase A treatment. Many of these genes are involved in signaling pathways that regulate energy metabolism, cell-growth promoting and transforming activity, modulation of the cancer microenvironment and extracellular matrix components, and cellular proliferation and differentiation. Following RNase A treatment, we detected an upregulation of carbohydrate metabolism, inositol phosphate cascade and oxidative phosphorylation, re-arrangement of cell adhesion, cell cycle control, apoptosis, and transcription. Whereas cancer-related signaling pathways (e.g., TGF-beta, JAK/STAT, and Wnt) were downregulated following RNase A treatment, as in the case of the PI3K/AKT pathway, which is involved in the progression of non-small lung cancer. RNase A therapy resulted in the downregulation of genes that inhibit the biogenesis of some miRNAs, particularly the let-7 miRNA family. Taken together, our data suggest that the antitumor activity and decreased invasion potential of tumor cells caused by RNase A are associated with enhanced energy cascade functioning, rearrangement of cancer-related events regulating cell growth and dissemination, and attenuation of signaling pathways having tumor-promoting activity. Thus, RNase A can be proposed as a potential component of anticancer therapy with multiple modes of action.

15.
PLoS One ; 12(2): e0171988, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-28222152

RESUMO

Taking into account recently obtained data indicating the participation of circulating extracellular DNA (exDNA) in tumorigenesis, enzymes with deoxyribonucleic activity have again been considered as potential antitumour and antimetastatic drugs. Previously, using murine Lewis lung carcinoma and hepatocellular carcinoma A1 tumour models, we have shown the antimetastatic activity of bovine DNase I, which correlates with an increase of DNase activity and a decrease of exDNA concentration in the blood serum of tumour-bearing mice. In this work, using next-generation sequencing on the ABS SOLiD™ 5.500 platform, we performed a search for molecular targets of DNase I by comparing the exDNA profiles of healthy animals, untreated animals with Lewis lung carcinoma (LLC) and those with LLC treated with DNase I. We found that upon DNase I treatment of LLC-bearing mice, together with inhibition of metastasis, a number of strong alterations in the patterns of exDNA were observed. The major differences in exDNA profiles between groups were: i) the level of GC-poor sequences increased during tumour development was reduced to that of healthy mice; ii) levels of sequences corresponding to tumour-associated genes Hmga2, Myc and Jun were reduced in the DNase I-treated group in comparison with non-treated mice; iii) 224 types of tandem repeat over-presented in untreated LLC-bearing mice were significantly reduced after DNase I treatment. The most important result obtained in the work is that DNase I decreased the level of B-subfamily repeats having homology to human ALU repeats, known as markers of carcinogenesis, to the level of healthy animals. Thus, the obtained data lead us to suppose that circulating exDNA plays a role in tumour dissemination, and alteration of multiple molecular targets in the bloodstream by DNase I reduces the invasive potential of tumours.


Assuntos
Carcinoma Pulmonar de Lewis/sangue , DNA de Neoplasias/sangue , Desoxirribonuclease I/metabolismo , Invasividade Neoplásica , Animais , Carcinoma Pulmonar de Lewis/patologia , Bovinos , DNA de Neoplasias/genética , Espaço Extracelular/química , Biblioteca Gênica , Sequenciamento de Nucleotídeos em Larga Escala , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Transplante de Neoplasias , Reação em Cadeia da Polimerase em Tempo Real
16.
Biomaterials ; 122: 163-178, 2017 04.
Artigo em Inglês | MEDLINE | ID: mdl-28126663

RESUMO

MicroRNAs (miRNAs) are active regulators in malignant growth and constitute potential targets for anticancer therapy. Consequently, considerable effort has focused on identifying effective ways to modulate aberrant miRNA expression. Here we introduce and assess a novel type of chemically engineered biomaterial capable of cleaving specific miRNA sequences, i.e. miRNA-specific artificial ribonucleases (hereafter 'miRNase'). The miRNase template presented here consists of the catalytic peptide Acetyl-[(LeuArg)2Gly]2 covalently attached to a miRNA-targeting oligonucleotide, which can be linear or hairpin. The peptide C-terminus is conjugated to an aminohexyl linker located at either the 3'- or 5'-end of the oligonucleotide. The cleavage efficacy, structural aspects of cleavage and biological relevance of a set of these designed miRNases was assayed with respect to highly oncogenic miR-21. Several miRNases demonstrated effective site-selective cleavage of miR-21 exclusively at G-X bonds. One of the most efficient miRNase was shown to specifically inhibit miR-21 in lymphosarcoma cells and lead to a reduction in their proliferative activity. This report provides the first experimental evidence that metallo-independent peptide-oligonucleotide chemical ribonucleases are able to effectively and selectively down-regulate oncogenic miRNA in tumour cells, thus suggesting their potential in development of novel therapeutics aimed at overcoming overexpression of disease-related miRNAs.


Assuntos
Linfoma não Hodgkin/genética , Linfoma não Hodgkin/metabolismo , MicroRNAs/genética , MicroRNAs/metabolismo , Oligonucleotídeos/administração & dosagem , Peptídeos/administração & dosagem , Ribonucleases/administração & dosagem , Animais , Linhagem Celular Tumoral , Camundongos , Oligonucleotídeos/química , Peptídeos/química , Ribonucleases/química
17.
PLoS One ; 8(12): e83482, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-24386211

RESUMO

Novel data showing an important role of microRNAs in mediating tumour progression opened a new field of possible molecular targets for cytotoxic ribonucleases. Recently, antitumour and antimetastatic activities of pancreatic ribonuclease A were demonstrated and here genome-wide profiles of microRNAs in the tumour and blood of mice bearing Lewis lung carcinoma after treatment with RNase A were analysed by high-throughput Sequencing by Oligonucleotide Ligation and Detection (SOLiD™) sequencing technology. Sequencing data showed that RNase A therapy resulted in the boost of 116 microRNAs in tumour tissue and a significant drop of 137 microRNAs in the bloodstream that were confirmed by qPCR. The microRNA boost in the tumour was accompanied by the overexpression of microRNA processing genes: RNASEN (Drosha), xpo5, dicer1, and eif2c2 (Ago2). Ribonuclease activity of RNase A was shown to be crucial for the activation of both microRNA synthesis and expression of the microRNA processing genes. In the tumour tissue, RNase A caused the upregulation of both oncomirs and tumour-suppressor microRNAs, including microRNAs of the let-7 family, known to negatively regulate tumour progression. Our results suggest that the alteration of microRNA signature caused by RNase A treatment leads to the attenuation of tumour malignancy.


Assuntos
MicroRNAs/genética , MicroRNAs/metabolismo , Neoplasias/genética , Neoplasias/metabolismo , Ribonuclease Pancreático/metabolismo , Animais , Carcinoma Pulmonar de Lewis , Modelos Animais de Doenças , Progressão da Doença , Feminino , Perfilação da Expressão Gênica , Regulação Neoplásica da Expressão Gênica , Biblioteca Gênica , Camundongos , MicroRNAs/sangue , Modelos Biológicos , Neoplasias/patologia , Reprodutibilidade dos Testes , Análise de Sequência de DNA
18.
Cell Cycle ; 12(13): 2120-31, 2013 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-23759588

RESUMO

Exogenous ribonucleases are known to inhibit tumor growth via apoptosis induction in tumor cells, allowing to consider them as promising anticancer drugs for clinical application. In this work the antitumor potential of binase was evaluated in vivo and the mechanism of cytotoxic effect of binase on tumor cells was comprehensively studied in vitro. We investigated tumoricidal activity of binase using three murine tumor models of Lewis lung carcinoma (LLC), lymphosarcoma RLS 40 and melanoma B-16. We show for the first time that intraperitoneal injection of binase at a dose range 0.1-5 mg/kg results in retardation of primary tumor growth up to 45% in LLC and RLS 40 and inhibits metastasis up to 50% in LLC and RLS 40 and up to 70% in B-16 melanoma. Binase does not exhibit overall toxic effect and displays a general systemic and immunomodulatory effects. Treatment of RLS 40-bearing animals with binase together with polychemotherapy revealed that binase decreases the hepatotoxicity of polychemotherapy while maintaining its antitumor effect. It was demonstrated that the cytotoxic effect of binase is realized via the induction of the intrinsic and extrinsic apoptotic pathways. Activation of intrinsic apoptotic pathway is manifested by a drop of mitochondrial potential, increase in calcium concentration and inhibition of respiratory activity. Subsequent synthesis of TNF-α in the cells under the action of binase triggers extrinsic apoptotic pathway through the binding of TNF with cell-death receptors and activation of caspase 8. Thus binase is a potential anticancer therapeutics inducing apoptosis in cancer cells.


Assuntos
Antineoplásicos/farmacologia , Apoptose , Carcinoma Pulmonar de Lewis/tratamento farmacológico , Endorribonucleases/farmacologia , Linfoma não Hodgkin/tratamento farmacológico , Melanoma Experimental/tratamento farmacológico , Animais , Antineoplásicos/administração & dosagem , Antineoplásicos/toxicidade , Protocolos de Quimioterapia Combinada Antineoplásica/farmacologia , Protocolos de Quimioterapia Combinada Antineoplásica/uso terapêutico , Carcinoma Pulmonar de Lewis/secundário , Linhagem Celular Tumoral , Proliferação de Células , Ciclofosfamida/farmacologia , Ciclofosfamida/uso terapêutico , Citocinas/sangue , Doxorrubicina/farmacologia , Doxorrubicina/uso terapêutico , Ensaios de Seleção de Medicamentos Antitumorais , Endorribonucleases/administração & dosagem , Endorribonucleases/toxicidade , Injeções Intramusculares , Injeções Intraperitoneais , Fígado/efeitos dos fármacos , Fígado/patologia , Linfoma não Hodgkin/sangue , Melanoma Experimental/secundário , Potencial da Membrana Mitocondrial/efeitos dos fármacos , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Endogâmicos CBA , Transplante de Neoplasias , Prednisona/farmacologia , Prednisona/uso terapêutico , Espécies Reativas de Oxigênio/metabolismo , Carga Tumoral/efeitos dos fármacos , Vincristina/farmacologia , Vincristina/uso terapêutico
19.
ISRN Oncol ; 2012: 721612, 2012.
Artigo em Inglês | MEDLINE | ID: mdl-23251817

RESUMO

Antitumor therapy of hematological malignancies is impeded due to the high toxicity of polychemotherapy toward liver and increasing multiple drug resistance (MDR) of tumor cells under the pressure of polychemotherapy. These two problems can augment each other and significantly reduce the efficiency of antineoplastic therapy. We studied the combined effect of polychemotherapy and upregulated MDR of lymphosarcoma RLS(40) onto the liver of experimental mice using two treatment schemes. Scheme 1 is artificial: the tumor was subjected to four courses of polychemotherapy while the liver of the tumor-bearing mice was exposed to only one. This was achieved by threefold tumor retransplantation taken from animals subjected to chemotherapy into intact animals. Scheme 2 displays "real-life" status of patients with MDR malignancies: both the tumor and the liver of tumor-bearing mice were subjected to three sequential courses of polychemotherapy. Our data show that the strengthening of MDR phenotype of RLS(40) under polychemotherapy and toxic pressure of polychemotherapy itself has a synergistic damaging effect on the liver that is expressed in the accumulation of destructive changes in the liver tissue, the reduction of the regeneration capacity of the liver, and increasing of Pgp expression on the surface of hepatocytes.

20.
Biochimie ; 93(4): 689-96, 2011 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-21194552

RESUMO

Recent data on the involvement of miRNA and circulating tumor-derived DNA in regulation of tumorigenesis showed a great prospect for these molecules as a novel class of therapeutic targets and gave a new start for the study of enzymes cleaving nucleic acids as potential antitumor and antimetastatic agents. In the present paper using two murine tumor models with pulmonary or liver metastases we studied the antimetastatic potential of RNase A and DNase I and performed a search for possible molecular targets of the enzymes. Herein, we show for the first time that daily administration of ultralow doses of RNase A (0.5-50 µg/kg) and DNase I (0.02-2.3 mg/kg) inhibits the development of metastasis to 60-90% and RNase A exerts 30% retardation of tumor growth. Remarkably, the increase in RNase A dose from 50 µg/kg to 10mg/kg leads to a disappearance of antitumor and antimetastatic effects. Simultaneous treatment of tumor-bearing animals with RNase A and DNase I leads to an additive effect and results in almost total absence of metastases. The use of RNase A as an adjuvant in conjunction with conventional cytostatic cyclophosphamide results in a reliable enhancement of antitumor and antimetastatic effect of the therapy compared with the use of these agents individually. The search for possible molecular mechanism of antimetastatic effect of nucleases showed that daily administration of the enzymes reduced the pathologically increased level of extracellular nucleic acids and increased nuclease activity of the blood plasma of tumor-bearing mice back to the level of healthy animals. Thus, we unequivocally show that the proposed protocol of treatment of tumor-bearing animals with RNase A and DNase I has a general systemic and immunomodulatory effect, leads to a drastic suppression of metastasis development, and in perspective may become an effective component of intensive complex therapy of cancer.


Assuntos
Antineoplásicos/administração & dosagem , Protocolos Antineoplásicos , Carcinoma Pulmonar de Lewis/tratamento farmacológico , Desoxirribonuclease I/administração & dosagem , Neoplasias Hepáticas/tratamento farmacológico , Neoplasias Pulmonares/tratamento farmacológico , Ribonuclease Pancreático/administração & dosagem , Animais , Carcinoma Pulmonar de Lewis/secundário , Ciclofosfamida/administração & dosagem , Modelos Animais de Doenças , Relação Dose-Resposta a Droga , Feminino , Neoplasias Hepáticas/secundário , Neoplasias Pulmonares/secundário , Camundongos , Camundongos Endogâmicos C57BL
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa