Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
New Phytol ; 237(4): 1432-1445, 2023 02.
Artigo em Inglês | MEDLINE | ID: mdl-36375492

RESUMO

Despite the paramount role of plant diversity for ecosystem functioning, biogeochemical cycles, and human welfare, knowledge of its global distribution is still incomplete, hampering basic research and biodiversity conservation. Here, we used machine learning (random forests, extreme gradient boosting, and neural networks) and conventional statistical methods (generalized linear models and generalized additive models) to test environment-related hypotheses of broad-scale vascular plant diversity gradients and to model and predict species richness and phylogenetic richness worldwide. To this end, we used 830 regional plant inventories including c. 300 000 species and predictors of past and present environmental conditions. Machine learning showed a superior performance, explaining up to 80.9% of species richness and 83.3% of phylogenetic richness, illustrating the great potential of such techniques for disentangling complex and interacting associations between the environment and plant diversity. Current climate and environmental heterogeneity emerged as the primary drivers, while past environmental conditions left only small but detectable imprints on plant diversity. Finally, we combined predictions from multiple modeling techniques (ensemble predictions) to reveal global patterns and centers of plant diversity at multiple resolutions down to 7774 km2 . Our predictive maps provide accurate estimates of global plant diversity available at grain sizes relevant for conservation and macroecology.


Assuntos
Biodiversidade , Ecossistema , Humanos , Filogenia , Clima , Modelos Lineares , Plantas
2.
Symbiosis ; 86(1): 123-132, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35368327

RESUMO

The vegetation in the Arabian Peninsula experiences drought, heat, soil salinity, and low fertility, mainly due to low phosphorus (P) availability. The beneficial mycorrhizal symbiosis between plants and arbuscular mycorrhizal fungi (AMF) is a key factor supporting plant growth under such environmental conditions. Therefore, AMF strains isolated from these soils might be useful as biotechnological tools for agriculture and revegetation practices in the region. Here we present a pioneering program to isolate, identify, and apply AMF isolated from rhizosphere soils of agricultural and natural habitats, namely date palm plantations and five native desert plants, respectively in the Southern Arabian Peninsula. We established taxonomically unique AMF species as single-spore cultures as part of an expanding collection of AMF strains adapted to arid ecosystems. Preliminary experiments were conducted to evaluate the abilities of these AMF strains to promote seedling growth of a main crop Phoenix dactylifera L. and a common plant Prosopis cineraria L. (Druce) in the Arabian Peninsula. The results showed that inoculation with certain AMF species enhanced the growth of both plants, highlighting the potential of these fungi as part of sustainable land use practices in this region.

3.
Nature ; 525(7567): 100-3, 2015 Sep 03.
Artigo em Inglês | MEDLINE | ID: mdl-26287466

RESUMO

All around the globe, humans have greatly altered the abiotic and biotic environment with ever-increasing speed. One defining feature of the Anthropocene epoch is the erosion of biogeographical barriers by human-mediated dispersal of species into new regions, where they can naturalize and cause ecological, economic and social damage. So far, no comprehensive analysis of the global accumulation and exchange of alien plant species between continents has been performed, primarily because of a lack of data. Here we bridge this knowledge gap by using a unique global database on the occurrences of naturalized alien plant species in 481 mainland and 362 island regions. In total, 13,168 plant species, corresponding to 3.9% of the extant global vascular flora, or approximately the size of the native European flora, have become naturalized somewhere on the globe as a result of human activity. North America has accumulated the largest number of naturalized species, whereas the Pacific Islands show the fastest increase in species numbers with respect to their land area. Continents in the Northern Hemisphere have been the major donors of naturalized alien species to all other continents. Our results quantify for the first time the extent of plant naturalizations worldwide, and illustrate the urgent need for globally integrated efforts to control, manage and understand the spread of alien species.


Assuntos
Biodiversidade , Mapeamento Geográfico , Espécies Introduzidas/estatística & dados numéricos , Plantas , Bases de Dados Factuais , América do Norte , Ilhas do Pacífico , Filogeografia
4.
Ecology ; 100(1): e02542, 2019 01.
Artigo em Inglês | MEDLINE | ID: mdl-30341991

RESUMO

This dataset provides the Global Naturalized Alien Flora (GloNAF) database, version 1.2. GloNAF represents a data compendium on the occurrence and identity of naturalized alien vascular plant taxa across geographic regions (e.g. countries, states, provinces, districts, islands) around the globe. The dataset includes 13,939 taxa and covers 1,029 regions (including 381 islands). The dataset is based on 210 data sources. For each taxon-by-region combination, we provide information on whether the taxon is considered to be naturalized in the specific region (i.e. has established self-sustaining populations in the wild). Non-native taxa are marked as "alien", when it is not clear whether they are naturalized. To facilitate alignment with other plant databases, we provide for each taxon the name as given in the original data source and the standardized taxon and family names used by The Plant List Version 1.1 (http://www.theplantlist.org/). We provide an ESRI shapefile including polygons for each region and information on whether it is an island or a mainland region, the country and the Taxonomic Databases Working Group (TDWG) regions it is part of (TDWG levels 1-4). We also provide several variables that can be used to filter the data according to quality and completeness of alien taxon lists, which vary among the combinations of regions and data sources. A previous version of the GloNAF dataset (version 1.1) has already been used in several studies on, for example, historical spatial flows of taxa between continents and geographical patterns and determinants of naturalization across different taxonomic groups. We intend the updated and expanded GloNAF version presented here to be a global resource useful for studying plant invasions and changes in biodiversity from regional to global scales. We release these data into the public domain under a Creative Commons Zero license waiver (https://creativecommons.org/share-your-work/public-domain/cc0/). When you use the data in your publication, we request that you cite this data paper. If GloNAF is a major part of the data analyzed in your study, you should consider inviting the GloNAF core team (see Metadata S1: Originators in the Overall project description) as collaborators. If you plan to use the GloNAF dataset, we encourage you to contact the GloNAF core team to check whether there have been recent updates of the dataset, and whether similar analyses are already ongoing.

5.
Ann Bot ; 124(3): 411-422, 2019 10 18.
Artigo em Inglês | MEDLINE | ID: mdl-31418009

RESUMO

BACKGROUND AND AIMS: Southern Arabia is a global biodiversity hotspot with a high proportion of endemic desert-adapted plants. Here we examine evidence for a Pleistocene climate refugium in the southern Central Desert of Oman, and its role in driving biogeographical patterns of endemism. METHODS: Distribution data for seven narrow-range endemic plants were collected systematically across 195 quadrats, together with incidental and historic records. Important environmental variables relevant to arid coastal areas, including night-time fog and cloud cover, were developed for the study area. Environmental niche models using presence/absence data were built and tuned for each species, and spatial overlap was examined. KEY RESULTS: A region of the Jiddat Al Arkad reported independent high model suitability for all species. Examination of environmental data across southern Oman indicates that the Jiddat Al Arkad displays a regionally unique climate with higher intra-annual stability, due in part to the influence of the southern monsoon. Despite this, the relative importance of environmental variables was highly differentiated among species, suggesting that characteristic variables such as coastal fog are not major cross-species predictors at this scale. CONCLUSIONS: The co-occurrence of a high number of endemic study species within a narrow monsoon-influenced region is indicative of a refugium with low climate change velocity. Combined with climate analysis, our findings provide strong evidence for a southern Arabian Pleistocene refugium in Oman's Central Desert. We suggest that this refugium has acted as an isolated temperate and mesic island in the desert, resulting in the evolution of these narrow-range endemic flora. Based on the composition of species, this system may represent the northernmost remnant of a continuous belt of mesic vegetation formerly ranging from Africa to Asia, with close links to the flora of East Africa. This has significant implications for future conservation of endemic plants in an arid biodiversity hotspot.


Assuntos
Filogenia , Plantas , África , África Oriental , Arábia , Ásia , Ilhas , Clima Tropical
6.
Bioscience ; 67(6): 534-545, 2017 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-28608869

RESUMO

We assess progress toward the protection of 50% of the terrestrial biosphere to address the species-extinction crisis and conserve a global ecological heritage for future generations. Using a map of Earth's 846 terrestrial ecoregions, we show that 98 ecoregions (12%) exceed Half Protected; 313 ecoregions (37%) fall short of Half Protected but have sufficient unaltered habitat remaining to reach the target; and 207 ecoregions (24%) are in peril, where an average of only 4% of natural habitat remains. We propose a Global Deal for Nature-a companion to the Paris Climate Deal-to promote increased habitat protection and restoration, national- and ecoregion-scale conservation strategies, and the empowerment of indigenous peoples to protect their sovereign lands. The goal of such an accord would be to protect half the terrestrial realm by 2050 to halt the extinction crisis while sustaining human livelihoods.


Assuntos
Biodiversidade , Conservação dos Recursos Naturais , Clima , Ecologia , Ecossistema , Humanos
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa