Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
Biomedicines ; 12(3)2024 Feb 28.
Artigo em Inglês | MEDLINE | ID: mdl-38540153

RESUMO

Rift Valley fever is a vector-borne zoonotic disease caused by the Rift Valley fever virus (Phlebovirus genus) listed among the eight pathogens included in the Bluepoint list by the WHO. The transmission is mainly vehicled by Aedes and Culex mosquito species. Symptoms of the disease are varied and non-specific, making clinical diagnosis often challenging, especially in the early stages. Due to the difficulty in distinguishing Rift Valley fever from other viral hemorrhagic fevers, as well as many other diseases that cause fever, an early diagnosis of the infection is important to limit its spread and to provide appropriate care to patients. To date, there is no validated point-of-care diagnostic tool. The virus can only be detected in the blood for a brief period, suggesting that molecular methods alone are not sufficient for case determination. For this, it is preferable to combine both molecular and serological tests. The wide distribution of competent vectors in non-endemic areas, together with global climate change, elicit the spread of RVFV to continents other than Africa, making surveillance activities vital to prevent or to limit the impact of human outbreaks and for a rapid identification of positive cases, making diagnosis a key factor for this achievement.

2.
Viruses ; 15(10)2023 10 07.
Artigo em Inglês | MEDLINE | ID: mdl-37896839

RESUMO

Nipah virus (NiV) is a paramyxovirus responsible for a high mortality rate zoonosis. As a result, it has been included in the list of Blueprint priority pathogens. Bats are the main reservoirs of the virus, and different clinical courses have been described in humans. The Bangladesh strain (NiV-B) is often associated with severe respiratory disease, whereas the Malaysian strain (NiV-M) is often associated with severe encephalitis. An early diagnosis of NiV infection is crucial to limit the outbreak and to provide appropriate care to the patient. Due to high specificity and sensitivity, qRT-PCR is currently considered to be the optimum method in acute NiV infection assessment. Nasal swabs, cerebrospinal fluid, urine, and blood are used for RT-PCR testing. N gene represents the main target used in molecular assays. Different sensitivities have been observed depending on the platform used: real-time PCR showed a sensitivity of about 103 equivalent copies/reaction, SYBRGREEN technology's sensitivity was about 20 equivalent copies/reaction, and in multiple pathogen card arrays, the lowest limit of detection (LOD) was estimated to be 54 equivalent copies/reaction. An international standard for NiV is yet to be established, making it difficult to compare the sensitivity of the different methods. Serological assays are for the most part used in seroprevalence studies owing to their lower sensitivity in acute infection. Due to the high epidemic and pandemic potential of this virus, the diagnosis of NiV should be included in a more global One Health approach to improve surveillance and preparedness for the benefit of public health. Some steps need to be conducted in the diagnostic field in order to become more efficient in epidemic management, such as development of point-of-care (PoC) assays for the rapid diagnosis of NiV.


Assuntos
Quirópteros , Infecções por Henipavirus , Vírus Nipah , Animais , Humanos , Vírus Nipah/genética , Infecções por Henipavirus/diagnóstico , Infecções por Henipavirus/epidemiologia , Estudos Soroepidemiológicos , Zoonoses , Quirópteros/genética , Reação em Cadeia da Polimerase em Tempo Real
3.
Front Microbiol ; 14: 1206951, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37705731

RESUMO

Coronaviridae is recognized as one of the most rapidly evolving virus family as a consequence of the high genomic nucleotide substitution rates and recombination. The family comprises a large number of enveloped, positive-sense single-stranded RNA viruses, causing an array of diseases of varying severity in animals and humans. To date, seven human coronaviruses (HCoV) have been identified, namely HCoV-229E, HCoV-NL63, HCoV-OC43 and HCoV-HKU1, which are globally circulating in the human population (seasonal HCoV, sHCoV), and the highly pathogenic SARS-CoV, MERS-CoV and SARS-CoV-2. Seasonal HCoV are estimated to contribute to 15-30% of common cold cases in humans; although diseases are generally self-limiting, sHCoV can sometimes cause severe lower respiratory infections and life-threatening diseases in a subset of patients. No specific treatment is presently available for sHCoV infections. Herein we show that the anti-infective drug nitazoxanide has a potent antiviral activity against three human endemic coronaviruses, the Alpha-coronaviruses HCoV-229E and HCoV-NL63, and the Beta-coronavirus HCoV-OC43 in cell culture with IC50 ranging between 0.05 and 0.15 µg/mL and high selectivity indexes. We found that nitazoxanide does not affect HCoV adsorption, entry or uncoating, but acts at postentry level and interferes with the spike glycoprotein maturation, hampering its terminal glycosylation at an endoglycosidase H-sensitive stage. Altogether the results indicate that nitazoxanide, due to its broad-spectrum anti-coronavirus activity, may represent a readily available useful tool in the treatment of seasonal coronavirus infections.

SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa