Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 12 de 12
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
J Am Chem Soc ; 145(8): 4462-4472, 2023 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-36802634

RESUMO

Bimolecular excited-state proton-coupled electron transfer (PCET*) was observed for reaction of the triplet MLCT state of [(dpab)2Ru(4,4'-dhbpy)]2+ (dpab = 4,4'-di(n-propyl)amido-2,2'-bipyridine, 4,4'-dhbpy = 4,4'-dihydroxy-2,2'-bipyridine) with N-methyl-4,4'-bipyridinium (MQ+) and N-benzyl-4,4'-bipyridinium (BMQ+) in dry acetonitrile solutions. The PCET* reaction products, the oxidized and deprotonated Ru complex, and the reduced protonated MQ+ can be distinguished from the excited state electron transfer (ET*) and the excited state proton transfer (PT*) products by the difference in the visible absorption spectrum of the species emerging from the encounter complex. The observed behavior differs from that of reaction of the MLCT state of [(bpy)2Ru(4,4'-dhbpy)]2+ (bpy = 2,2'-bipyridine) with MQ+, where initial ET* is followed by diffusion-limited proton transfer from the coordinated 4,4'-dhbpy to MQ0. The difference in observed behavior can be rationalized based on changes in the free energies of ET* and PT*. Substitution of bpy with dpab results in the ET* process becoming significantly more endergonic and the PT* reaction becoming somewhat less endergonic.

2.
Inorg Chem ; 56(13): 7519-7532, 2017 Jul 03.
Artigo em Inglês | MEDLINE | ID: mdl-28636344

RESUMO

Metallo prodrugs that take advantage of the inherent acidity surrounding cancer cells have yet to be developed. We report a new class of pH-activated metallo prodrugs (pHAMPs) that are activated by light- and pH-triggered ligand dissociation. These ruthenium complexes take advantage of a key characteristic of cancer cells and hypoxic solid tumors (acidity) that can be exploited to lessen the side effects of chemotherapy. Five ruthenium complexes of the type [(N,N)2Ru(PL)]2+ were synthesized, fully characterized, and tested for cytotoxicity in cell culture (1A: N,N = 2,2'-bipyridine (bipy) and PL, the photolabile ligand, = 6,6'-dihydroxybipyridine (6,6'-dhbp); 2A: N,N = 1,10-phenanthroline (phen) and PL = 6,6'-dhbp; 3A: N,N = 2,3-dihydro-[1,4]dioxino[2,3-f][1,10]phenanthroline (dop) and PL = 6,6'-dhbp; 4A: N,N = bipy and PL = 4,4'-dimethyl-6,6'-dihydroxybipyridine (dmdhbp); 5A: N,N = 1,10-phenanthroline (phen) and PL = 4,4'-dihydroxybipyridine (4,4'-dhbp). The thermodynamic acidity of these complexes was measured in terms of two pKa values for conversion from the acidic form (XA) to the basic form (XB) by removal of two protons. Single-crystal X-ray diffraction data is discussed for 2A, 2B, 3A, 4B, and 5A. All complexes except 5A showed measurable photodissociation with blue light (λ = 450 nm). For complexes 1A-4A and their deprotonated analogues (1B-4B), the protonated form (at pH 5) consistently gave faster rates of photodissociation and larger quantum yields for the photoproduct, [(N,N)2Ru(H2O)2]2+. This shows that low pH can lead to greater rates of photodissociation. Cytotoxicity studies with 1A-5A showed that complex 3A is the most cytotoxic complex of this series with IC50 values as low as 4 µM (with blue light) versus two breast cancer cell lines. Complex 3A is also selectively cytotoxic, with sevenfold higher toxicity toward cancerous versus normal breast cells. Phototoxicity indices with 3A were as high as 120, which shows that dark toxicity is avoided. The key difference between complex 3A and the other complexes tested appears to be higher uptake of the complex as measured by inductively coupled plasma mass spectrometry, and a more hydrophobic complex as compared to 1A, which may enhance uptake. These complexes demonstrate proof of concept for dual activation by both low pH and blue light, thus establishing that a pHAMP approach can be used for selective targeting of cancer cells.


Assuntos
Antineoplásicos/farmacologia , Complexos de Coordenação/farmacologia , Luz , Pró-Fármacos/farmacologia , Rutênio/farmacologia , Antineoplásicos/síntese química , Antineoplásicos/química , Proliferação de Células/efeitos dos fármacos , Complexos de Coordenação/síntese química , Complexos de Coordenação/química , Cristalografia por Raios X , Relação Dose-Resposta a Droga , Ensaios de Seleção de Medicamentos Antitumorais , Humanos , Concentração de Íons de Hidrogênio , Modelos Moleculares , Estrutura Molecular , Pró-Fármacos/síntese química , Pró-Fármacos/química , Teoria Quântica , Rutênio/química , Relação Estrutura-Atividade , Células Tumorais Cultivadas
3.
Bioorg Med Chem Lett ; 24(16): 3706-9, 2014 Aug 15.
Artigo em Inglês | MEDLINE | ID: mdl-25082127

RESUMO

Dialkyl 4,4'-bipyridinium compounds, known as 'paraquats' (PQs), have a long history of use as herbicides, as redox indicators, and more recently as potent antibacterial agents. However, due to their ability to form reactive oxygen species (ROS) in vivo, PQs are also known to be toxic. We proposed that altering the electrochemical properties of PQ, specifically by preparing isomeric bipyridinium structures with 3,3'- and 3,4'-substitution of the nitrogen heteroatoms on the biaryl core, would maintain antibacterial activity, yet decrease toxicity. We have thus prepared a series of 17 amphiphiles, dubbed 'metaquat' (MQ) and 'parametaquat' (PMQ), respectively, and investigated their antibacterial and electrochemical properties. Optimal inhibition of bacterial growth was observed in symmetric, biscationic structures; minimum inhibitory concentration (MIC) values measured as low as 0.5 µM against both Gram-positive and Gram-negative bacteria for the compound PMQ-11,11. Electrochemical analysis demonstrated the redox properties of the dialkyl 3,3'- and 3,4'-bipyridinium amphiphiles to be distinct from those of the 4,4'-bipyridinium isomer. Thus MQ and PMQ amphiphiles maintain the strong antibacterial activity of the PQ isomers, but show promise for reduced ROS toxicity.


Assuntos
Antibacterianos/farmacologia , Enterococcus faecalis/efeitos dos fármacos , Escherichia coli/efeitos dos fármacos , Pseudomonas aeruginosa/efeitos dos fármacos , Compostos de Piridínio/farmacologia , Staphylococcus aureus/efeitos dos fármacos , Antibacterianos/síntese química , Antibacterianos/química , Relação Dose-Resposta a Droga , Enterococcus faecalis/crescimento & desenvolvimento , Escherichia coli/crescimento & desenvolvimento , Testes de Sensibilidade Microbiana , Estrutura Molecular , Pseudomonas aeruginosa/crescimento & desenvolvimento , Compostos de Piridínio/síntese química , Compostos de Piridínio/química , Staphylococcus aureus/crescimento & desenvolvimento , Relação Estrutura-Atividade
4.
Proc Natl Acad Sci U S A ; 108(21): 8554-8, 2011 May 24.
Artigo em Inglês | MEDLINE | ID: mdl-21555541

RESUMO

The simultaneous, concerted transfer of electrons and protons--electron-proton transfer (EPT)--is an important mechanism utilized in chemistry and biology to avoid high energy intermediates. There are many examples of thermally activated EPT in ground-state reactions and in excited states following photoexcitation and thermal relaxation. Here we report application of ultrafast excitation with absorption and Raman monitoring to detect a photochemically driven EPT process (photo-EPT). In this process, both electrons and protons are transferred during the absorption of a photon. Photo-EPT is induced by intramolecular charge-transfer (ICT) excitation of hydrogen-bonded-base adducts with either a coumarin dye or 4-nitro-4'-biphenylphenol. Femtosecond transient absorption spectral measurements following ICT excitation reveal the appearance of two spectroscopically distinct states having different dynamical signatures. One of these states corresponds to a conventional ICT excited state in which the transferring H(+) is initially associated with the proton donor. Proton transfer to the base (B) then occurs on the picosecond time scale. The other state is an ICT-EPT photoproduct. Upon excitation it forms initially in the nuclear configuration of the ground state by application of the Franck-Condon principle. However, due to the change in electronic configuration induced by the transition, excitation is accompanied by proton transfer with the protonated base formed with a highly elongated (+)H ─ B bond. Coherent Raman spectroscopy confirms the presence of a vibrational mode corresponding to the protonated base in the optically prepared state.


Assuntos
Corantes/química , Elétrons , Ligação de Hidrogênio , Prótons , Compostos de Bifenilo , Cumarínicos , Nitrofenóis , Processos Fotoquímicos , Análise Espectral
5.
Inorg Chem ; 52(16): 9175-83, 2013 Aug 19.
Artigo em Inglês | MEDLINE | ID: mdl-23387353

RESUMO

We report highly active iridium precatalysts, [Cp*Ir(N,N)Cl]Cl (1-4), for water oxidation that are supported by recently designed dihydroxybipyridine (dhbp) ligands. These ligands can readily be deprotonated in situ to alter the electronic properties at the metal; thus, these catalyst precursors have switchable properties that are pH-dependent. The pKa values in water of the iridium complexes are 4.6(1) and 4.4(2) with (N,N) = 6,6'-dhbp and 4,4'-dhbp, respectively, as measured by UV-vis spectroscopy. For homogeneous water oxidation catalysis, the sacrificial oxidant NaIO4 was found to be superior (relative to CAN) and allowed for catalysis to occur at higher pH values. With NaIO4 as the oxidant at pH 5.6, water oxidation occurred most rapidly with (N,N) = 4,4'-dhbp, and activity decreased in the order 4,4'-dhbp (3) > 6,6'-dhbp (2) ≫ 4,4'-dimethoxybipyridine (4) > bipy (1). Furthermore, initial rate studies at pH 3-6 showed that the rate enhancement with dhbp complexes at high pH is due to ligand deprotonation rather than the pH alone accelerating water oxidation. Thus, the protic groups in dhbp improve the catalytic activity by tuning the complexes' electronic properties upon deprotonation. Mechanistic studies show that the rate law is first-order in an iridium precatalyst, and dynamic light scattering studies indicate that catalysis appears to be homogeneous. It appears that a higher pH facilitates oxidation of precatalysts 2 and 3 and their [B(Ar(F))4](-) salt analogues 5 and 6. Both 2 and 5 were crystallographically characterized.


Assuntos
Irídio/química , Compostos Organometálicos/química , Oxigênio/química , Piridinas/química , Água/química , Catálise , Concentração de Íons de Hidrogênio , Ligantes , Modelos Moleculares , Estrutura Molecular , Compostos Organometálicos/síntese química , Oxirredução , Prótons
6.
Inorg Chem ; 50(7): 2754-63, 2011 Apr 04.
Artigo em Inglês | MEDLINE | ID: mdl-21355612

RESUMO

We have synthesized the complex [Ru(bpy)(2)(bpy(OH)(2))](2+) (bpy =2,2'-bipyridine, bpy(OH)(2) = 4,4'-dihydroxy-2,2'-bipyridine). Experimental results coupled with computational studies were utilized to investigate the structural and electronic properties of the complex, with particular attention paid toward the effects of deprotonation on these properties. The most distinguishing feature observed in the X-ray structural data is a shortening of the CO bond lengths in the modified ligand upon deprotonation. Similar results are also observed in the computational studies as the CO bond becomes double bond in character after deprotonating the complex. Electrochemically, the hydroxy-modified bipyridyl ligand plays a significant role in the redox properties of the complex. When protonated, the bpy(OH)(2) ligand undergoes irreversible reduction processes; however, when deprotonated, reduction of the substituted ligand is no longer observed, and several new irreversible oxidation processes associated with the modified ligand arise. pH studies indicate [Ru(bpy)(2)(bpy(OH)(2))](2+) has two distinct deprotonations at pK(a1) = 2.7 and pK(a2) = 5.8. The protonated [Ru(bpy)(2)(bpy(OH)(2))](2+) complex has a characteristic UV/Visible absorption spectrum similar to the well-studied complex [Ru(bpy)(3)](2+) with bands arising from Metal-to-Ligand Charge Transfer (MLCT) transitions. When the complex is deprotonated, the absorption spectrum is altered significantly and becomes heavily solvent dependent. Computational methods indicate that the deprotonated bpy(O(-))(2) ligand mixes heavily with the metal d orbitals leading to a new absorption manifold. The transitions in the complex have been assigned as mixed Metal-Ligand to Ligand Charge Transfer (MLLCT).


Assuntos
Complexos de Coordenação/química , Elétrons , Rutênio/química , Cristalografia por Raios X , Modelos Moleculares , Estrutura Molecular
7.
Dalton Trans ; 47(44): 15685-15693, 2018 Nov 13.
Artigo em Inglês | MEDLINE | ID: mdl-30285013

RESUMO

Ruthenium complexes containing a sterically congested metal center can serve as light activated prodrugs through photo-activated chemotherapy (PACT). In this work, we modified PACT agents containing 6,6'-dihydroxybipyridine (6,6'-dhbp) (Papish et al., Inorg. Chem., 2017, 56, 7519) by replacing it with a sterically bulky isoelectronic ligand, 6,6'-dimethoxybipyridine (6,6'-dmbp). The resulting complexes, [(phen)2Ru(6,6'-dmbp)]Cl2 (2OMe, phen = 1,10-phenanthroline) and [(dop)2Ru(6,6'-dmbp)]Cl2 (3OMe, dop = 2,3-dihydro-[1,4]dioxino[2,3-f][1,10]phenanthroline), have been fully characterized and display enhanced quantum yields for blue light triggered photodissociation of 0.024(6) and 0.0030(2), respectively. We have also synthesized 4OH = [(dmphen)2Ru(4,4'-dhbp)]Cl2 wherein dmphen = 2,9-dimethyl-1,10-phenanthroline and 4,4'-dhbp = 4,4'-dihydroxybipyridine. These ligands enhance steric bulk near the metal center and move the hydroxy groups further from the metal center, respectively. Complex 4OH displays a relatively low quantum yield of 0.0014(2). All of the new complexes (2OMe, 3OMe, 4OH) were tested in breast cancer cells (MDA-MB-231) and were non-toxic (IC50 > 100 µM). This has been interpreted in terms of unfavorable log(Do/w) values and furthermore photodissociation alone is insufficient for cytotoxicity. We also report the crystal structures of 4OH and 2OMe, the thermodynamic acidity of complex 4OH, and the redox potentials for all new complexes.

8.
Dalton Trans ; 47(12): 4149-4161, 2018 Mar 28.
Artigo em Inglês | MEDLINE | ID: mdl-29473071

RESUMO

Attaining high oxidation states at the metal center of transition metal complexes is a key design principle for many catalytic processes. One way to support high oxidation state chemistry is to utilize ligands that are electron-donating in nature. Understanding the structural and electronic changes of metal complexes as higher oxidation states are reached is critical towards designing more robust catalysts that are able to turn over at high rates without decomposing. To this end, we report herein the changes in structural and electronic properties as [Ru(bpy)2(44'bpy(OH)2)]2+ is oxidized to [Ru(bpy)2(44'bpy(OH)2)]3+ (bpy = 2,2'-bipyridine; 44'bpy(OH)2 = 4,4'-dihydroxy-2,2'-bipyridine). The 44'bpy(OH)2 ligand is a pH-dependent ligand where deprotonation of the hydroxyl groups leads to significant electronic donation to the metal center. A Pourbaix Diagram of the complex reveals a pH independent reduction potential below pH = 2.0 for the Ru3+/2+ process at 0.91 V vs. Ag/AgCl. Above pH = 2.0, pH dependence is observed with a decrease in reduction potential until pH = 6.8 where the complex is completely deprotonated, resulting in a reduction potential of 0.62 V vs. Ag/AgCl. Spectroelectrochemical studies as a function of pH reveal the disappearance of the Metal to Ligand Charge Transfer (MLCT) or Mixed Metal-Ligand to Charge Transfer bands upon oxidation and the appearance of a new low energy band. DFT calculations for this low energy band were carried out using both B3LYP and M06-L functionals for all protonation states and suggest that numerous new transition types occur upon oxidation to Ru3+.

9.
J Inorg Biochem ; 130: 103-11, 2014 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-24184694

RESUMO

Ruthenium drugs are potent anti-cancer agents, but inducing drug selectivity and enhancing their modest activity remain challenging. Slow Ru ligand loss limits the formation of free sites and subsequent binding to DNA base pairs. Herein, we designed a ligand that rapidly dissociates upon irradiation at low pH. Activation at low pH can lead to cancer selectivity, since many cancer cells have higher metabolism (and thus lower pH) than non-cancerous cells. We have used the pH sensitive ligand, 6,6'-dihydroxy-2,2'-bipyridine (66'bpy(OH)2), to generate [Ru(bpy)2(66'(bpy(OH)2)](2+), which contains two acidic hydroxyl groups with pKa1=5.26 and pKa2=7.27. Irradiation when protonated leads to photo-dissociation of the 66'bpy(OH)2 ligand. An in-depth study of the structural and electronic properties of the complex was carried out using X-ray crystallography, electrochemistry, UV/visible spectroscopy, and computational techniques. Notably, RuN bond lengths in the 66'bpy(OH)2 complex are longer (by ~0.3Å) than in polypyridyl complexes that lack 6 and 6' substitution. Thus, the longer bond length predisposes the complex for photo-dissociation and leads to the anti-cancer activity. When the complex is deprotonated, the 66'bpy(O(-))2 ligand molecular orbitals mix heavily with the ruthenium orbitals, making new mixed metal-ligand orbitals that lead to a higher bond order. We investigated the anti-cancer activities of [Ru(bpy)2(66'(bpy(OH)2)](2+), [Ru(bpy)2(44'(bpy(OH)2)](2+), and [Ru(bpy)3](2+) (44'(bpy(OH)2=4,4'-dihydroxy-2,2'-bipyridine) in HeLa cells, which have a relatively low pH. It is found that [Ru(bpy)2(66'(bpy(OH)2)](2+) is more cytotoxic than the other ruthenium complexes studied. Thus, we have identified a pH sensitive ruthenium scaffold that can be exploited for photo-induced anti-cancer activity.


Assuntos
Compostos Organomercúricos/química , Compostos Organomercúricos/farmacologia , Pró-Fármacos/farmacologia , Rutênio/química , Antineoplásicos/química , Antineoplásicos/farmacologia , Cristalografia por Raios X , Eletroquímica/métodos , Células HeLa/efeitos dos fármacos , Humanos , Concentração de Íons de Hidrogênio , Ligantes , Luz , Estrutura Molecular , Pró-Fármacos/química
10.
J Phys Chem B ; 116(51): 14886-91, 2012 Dec 27.
Artigo em Inglês | MEDLINE | ID: mdl-23190375

RESUMO

Excited-state proton-transfer dynamics between 7-hydroxy-4-(trifluoromethyl)coumarin and 1-methylimidazole base in toluene were studied using ultrafast pump-probe and time-resolved emission methods. Charge-transfer excitation of the hydroxycoumarin shifts electron density from the hydroxyl group to the carbonyl, resulting in an excited state where proton transfer to the base is highly favored. In addition to its the photoacid characteristics, the shift in the hydroxycoumarin electronic distribution gives it characteristics of a photobase as well. The result is a tautomerization process occurring on the picosecond time scale in which the 1-methylimidazole base acts as a proton-transfer shuttle from the hydroxyl group to the carbonyl.

11.
Dalton Trans ; 41(40): 12514-23, 2012 Oct 28.
Artigo em Inglês | MEDLINE | ID: mdl-22955328

RESUMO

We have synthesized the complex [Ru(bpy(OH)(2))(3)](2+) (bpy(OH)(2) = 4,4'-dihydroxy-2,2'-bipyridine) containing ligands that can be readily deprotonated. Both experimental and computational techniques were utilized to perform a thorough analysis of the structural and electronic properties of the complex in both the protonated and deprotonated state. The complex [Ru(bpy(OMe)(2))(3)](2+) (bpy(OMe)(2) = 4,4'-dimethoxy-2,2'-bipyridine) was also synthesized and studied, because the bpy(OMe)(2) ligand has electron-donating properties like bpy(OH)(2), but does not contain deprotonatable groups. Cyclic voltammetry of [Ru(bpy(OH)(2))(3)](2+) yields a reversible Ru(III/II) wave that shifts 1.43 V to lower energy upon deprotonation of the complex. UV/Visible absorbance spectroscopy reveals several Metal-to-Ligand Charge Transfer (MLCT) transitions that shift to lower energy upon deprotonation of the complex. This observation is in contrast to mixed-ligand systems containing deprotonatable groups, such as [Ru(bpy)(2)(bpy(OH)(2))](2+) (bpy = 2,2'-bipyridine) that demonstrate different types of electronic transitions assigned as mixed Metal-Ligand to Ligand Charge Transfer (MLLCT). The more symmetrical nature of the tris-bpy(OH)(2) complex most likely prevents the metal molecular orbitals from significantly mixing with the molecular orbitals of the deprotonated ligand. Luminescence studies were carried out on [Ru(bpy(OH)(2))(3)](2+) and reveal a shift to lower energy and quenching of the excited state upon deprotonation in accordance with the energy gap law.

12.
Inorg Chem ; 45(13): 5126-35, 2006 Jun 26.
Artigo em Inglês | MEDLINE | ID: mdl-16780335

RESUMO

The presence of the Zn2+ ion dramatically enhances the inhibition of trypsin and tryptase by amidine-modified benzimidazole inhibitors via coordination to both the catalytically active Ser195 hydroxyl and His57 imidazole residues of the enzyme and the nitrogens of the amidine-modified benzimidazole inhibitor (Janc, J. W.; Clark, J. M.; Warne, R. L.; Elrod, K. C.; Katz, B. A.; Moore, W. R. Biochemistry 2000, 39, 4792-4800). Some new 5-amidino-2-substituted benzimidazoles were synthesized and compared to known related molecules to explore systematically the metal-mediated inhibition of bovine trypsin as a function of coordinating groups and metal ions. These compounds take advantage of the favorable interaction between the amidine group on one side of the inhibitor and the Asp189 carboxylate in the binding pocket of the enzyme. The 5-amidino-2-substituted benzimidazoles all demonstrated similar inhibition constants (Ki) of 20-50 microM in the absence of metal ions. In the presence of Zn2+, inhibition increased to varying extents, depending upon the group substituted at the 2 position of the benzimidazole. The largest increase in inhibition in the presence of Zn2+ was seen with (5-amidino-2-benzimidazolyl)-2-benzimidazolylmethane with an apparent inhibition constant (Ki') of 0.37 +/- 0.06 nM, giving a 59,000-fold increase in inhibition when Zn2+ is present. Other metal ions, including Mn2+, Sc3+, and Hg2+, also increased the inhibition by several of the benzimidazole derivatives synthesized. The compound bis(2-benzimidazolyl)methane (BBIM) was also examined because it lacks the amidine group that provides a favorable hydrogen-bonding interaction with Asp189 in the binding pocket of trypsin. In the absence of metal ions, BBIM did not have a detectable affinity for trypsin; however, in the presence of Zn2+, a Ki' of 127 +/- 3 nM was observed. This result demonstrates that an affinity for the enzyme in the absence of metal ions is not required for potent metal-mediated inhibition, greatly expanding the possibilities for metal mediation of nonmetalloenzymes.


Assuntos
Benzimidazóis/química , Íons/química , Metais/química , Metais/metabolismo , Tripsina/química , Tripsina/metabolismo , Animais , Benzimidazóis/síntese química , Bovinos , Cristalografia por Raios X , Modelos Moleculares , Estrutura Terciária de Proteína
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa