Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 29
Filtrar
1.
Immunity ; 56(5): 1115-1131.e9, 2023 05 09.
Artigo em Inglês | MEDLINE | ID: mdl-36917985

RESUMO

Intestinal IL-17-producing T helper (Th17) cells are dependent on adherent microbes in the gut for their development. However, how microbial adherence to intestinal epithelial cells (IECs) promotes Th17 cell differentiation remains enigmatic. Here, we found that Th17 cell-inducing gut bacteria generated an unfolded protein response (UPR) in IECs. Furthermore, subtilase cytotoxin expression or genetic removal of X-box binding protein 1 (Xbp1) in IECs caused a UPR and increased Th17 cells, even in antibiotic-treated or germ-free conditions. Mechanistically, UPR activation in IECs enhanced their production of both reactive oxygen species (ROS) and purine metabolites. Treating mice with N-acetyl-cysteine or allopurinol to reduce ROS production and xanthine, respectively, decreased Th17 cells that were associated with an elevated UPR. Th17-related genes also correlated with ER stress and the UPR in humans with inflammatory bowel disease. Overall, we identify a mechanism of intestinal Th17 cell differentiation that emerges from an IEC-associated UPR.


Assuntos
Estresse do Retículo Endoplasmático , Mucosa Intestinal , Células Th17 , Estresse do Retículo Endoplasmático/efeitos dos fármacos , Mucosa Intestinal/efeitos dos fármacos , Mucosa Intestinal/metabolismo , Células Th17/citologia , Células Th17/metabolismo , Diferenciação Celular , Humanos , Animais , Camundongos , Camundongos Transgênicos , Antibacterianos/farmacologia
2.
Exp Cell Res ; 425(2): 113541, 2023 04 15.
Artigo em Inglês | MEDLINE | ID: mdl-36894052

RESUMO

SAMD9 and SAMD9L encode homologous interferon-induced genes that can inhibit cellular translation as well as proliferation and can restrict viral replication. Gain-of-function (GoF) variants in these ancient, yet rapidly evolving genes are associated with life-threatening disease in humans. Potentially driving population sequence diversity, several viruses have evolved host range factors that antagonize cell-intrinsic SAMD9/SAMD9L function. Here, to gain insights into the molecular regulation of SAMD9/SAMD9L activity and to explore the prospect of directly counteracting the activity of pathogenic variants, we examined whether dysregulated activity of pathogenic SAMD9/SAMD9L variants can be modulated by the poxviral host range factors M062, C7 and K1 in a co-expression system. We established that the virally encoded proteins retain interactions with select SAMD9/SAMD9L missense GoF variants. Furthermore, expression of M062, C7 and K1 could principally ameliorate the translation-inhibiting and growth-restrictive effect instigated by ectopically expressed SAMD9/SAMD9L GoF variants, yet with differences in potency. K1 displayed the greatest potency and almost completely restored cellular proliferation and translation in cells co-expressing SAMD9/SAMD9L GoF variants. However, neither of the viral proteins tested could antagonize a truncated SAMD9L variant associated with severe autoinflammation. Our study demonstrates that pathogenic SAMD9/SAMD9L missense variants can principally be targeted through molecular interactions, opening an opportunity for therapeutic modulation of their activity. Moreover, it provides novel insights into the complex intramolecular regulation of SAMD9/SAMD9L activity.


Assuntos
Especificidade de Hospedeiro , Proteínas Supressoras de Tumor , Humanos , Proteínas Supressoras de Tumor/genética , Proteínas Virais/genética , Fatores de Transcrição , Replicação Viral/genética , Peptídeos e Proteínas de Sinalização Intracelular/genética
3.
EMBO J ; 38(20): e101266, 2019 10 15.
Artigo em Inglês | MEDLINE | ID: mdl-31544965

RESUMO

Inflammasomes are cytosolic protein complexes, which orchestrate the maturation of active IL-1ß by proteolytic cleavage via caspase-1. Although many principles of inflammasome activation have been described, mechanisms that limit inflammasome-dependent immune responses remain poorly defined. Here, we show that the thiol-specific peroxidase peroxiredoxin-4 (Prdx4) directly regulates IL-1ß generation by interfering with caspase-1 activity. We demonstrate that caspase-1 and Prdx4 form a redox-sensitive regulatory complex via caspase-1 cysteine 397 that leads to caspase-1 sequestration and inactivation. Mice lacking Prdx4 show an increased susceptibility to LPS-induced septic shock. This effect was phenocopied in mice carrying a conditional deletion of Prdx4 in the myeloid lineage (Prdx4-ΔLysMCre). Strikingly, we demonstrate that Prdx4 co-localizes with inflammasome components in extracellular vesicles (EVs) from inflammasome-activated macrophages. Purified EVs are able to transmit a robust IL-1ß-dependent inflammatory response in vitro and also in recipient mice in vivo. Loss of Prdx4 boosts the pro-inflammatory potential of EVs. These findings identify Prdx4 as a critical regulator of inflammasome activity and provide new insights into remote cell-to-cell communication function of inflammasomes via macrophage-derived EVs.


Assuntos
Caspase 1/metabolismo , Vesículas Extracelulares/metabolismo , Inflamassomos/imunologia , Macrófagos/imunologia , Peroxirredoxinas/fisiologia , Choque Séptico/prevenção & controle , Animais , Caspase 1/genética , Citocinas/metabolismo , Feminino , Inflamassomos/metabolismo , Lipopolissacarídeos/toxicidade , Macrófagos/metabolismo , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Choque Séptico/induzido quimicamente , Choque Séptico/imunologia , Choque Séptico/patologia , Transdução de Sinais
4.
Brain ; 144(4): 1152-1166, 2021 05 07.
Artigo em Inglês | MEDLINE | ID: mdl-33899089

RESUMO

A close interaction between gut immune responses and distant organ-specific autoimmunity including the CNS in multiple sclerosis has been established in recent years. This so-called gut-CNS axis can be shaped by dietary factors, either directly or via indirect modulation of the gut microbiome and its metabolites. Here, we report that dietary supplementation with conjugated linoleic acid, a mixture of linoleic acid isomers, ameliorates CNS autoimmunity in a spontaneous mouse model of multiple sclerosis, accompanied by an attenuation of intestinal barrier dysfunction and inflammation as well as an increase in intestinal myeloid-derived suppressor-like cells. Protective effects of dietary supplementation with conjugated linoleic acid were not abrogated upon microbiota eradication, indicating that the microbiome is dispensable for these conjugated linoleic acid-mediated effects. Instead, we observed a range of direct anti-inflammatory effects of conjugated linoleic acid on murine myeloid cells including an enhanced IL10 production and the capacity to suppress T-cell proliferation. Finally, in a human pilot study in patients with multiple sclerosis (n = 15, under first-line disease-modifying treatment), dietary conjugated linoleic acid-supplementation for 6 months significantly enhanced the anti-inflammatory profiles as well as functional signatures of circulating myeloid cells. Together, our results identify conjugated linoleic acid as a potent modulator of the gut-CNS axis by targeting myeloid cells in the intestine, which in turn control encephalitogenic T-cell responses.


Assuntos
Suplementos Nutricionais , Enterite/patologia , Ácidos Linoleicos Conjugados/farmacologia , Monócitos/imunologia , Esclerose Múltipla Recidivante-Remitente/patologia , Adulto , Animais , Autoimunidade/efeitos dos fármacos , Encefalomielite Autoimune Experimental/imunologia , Encefalomielite Autoimune Experimental/patologia , Enterite/imunologia , Feminino , Humanos , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Monócitos/efeitos dos fármacos , Esclerose Múltipla Recidivante-Remitente/imunologia , Projetos Piloto , Estudo de Prova de Conceito
5.
Gastroenterology ; 159(4): 1357-1374.e10, 2020 10.
Artigo em Inglês | MEDLINE | ID: mdl-32673694

RESUMO

BACKGROUND & AIMS: Excess and unresolved endoplasmic reticulum (ER) stress in intestinal epithelial cells (IECs) promotes intestinal inflammation. Activating transcription factor 6 (ATF6) is one of the signaling mediators of ER stress. We studied the pathways that regulate ATF6 and its role for inflammation in IECs. METHODS: We performed an RNA interference screen, using 23,349 unique small interfering RNAs targeting 7783 genes and a luciferase reporter controlled by an ATF6-dependent ERSE (ER stress-response element) promoter, to identify proteins that activate or inhibit the ATF6 signaling pathway in HEK293 cells. To validate the screening results, intestinal epithelial cell lines (Caco-2 cells) were transfected with small interfering RNAs or with a plasmid overexpressing a constitutively active form of ATF6. Caco-2 cells with a CRISPR-mediated disruption of autophagy related 16 like 1 gene (ATG16L1) were used to study the effect of ATF6 on ER stress in autophagy-deficient cells. We also studied intestinal organoids derived from mice that overexpress constitutively active ATF6, from mice with deletion of the autophagy related 16 like 1 or X-Box binding protein 1 gene in IECs (Atg16l1ΔIEC or Xbp1ΔIEC, which both develop spontaneous ileitis), from patients with Crohn's disease (CD) and healthy individuals (controls). Cells and organoids were incubated with tunicamycin to induce ER stress and/or chemical inhibitors of newly identified activator proteins of ATF6 signaling, and analyzed by real-time polymerase chain reaction and immunoblots. Atg16l1ΔIEC and control (Atg16l1fl/fl) mice were given intraperitoneal injections of tunicamycin and were treated with chemical inhibitors of ATF6 activating proteins. RESULTS: We identified and validated 15 suppressors and 7 activators of the ATF6 signaling pathway; activators included the regulatory subunit of casein kinase 2 (CSNK2B) and acyl-CoA synthetase long chain family member 1 (ACSL1). Knockdown or chemical inhibition of CSNK2B and ACSL1 in Caco-2 cells reduced activity of the ATF6-dependent ERSE reporter gene, diminished transcription of the ATF6 target genes HSP90B1 and HSPA5 and reduced NF-κB reporter gene activation on tunicamycin stimulation. Atg16l1ΔIEC and or Xbp1ΔIEC organoids showed increased expression of ATF6 and its target genes. Inhibitors of ACSL1 or CSNK2B prevented activation of ATF6 and reduced CXCL1 and tumor necrosis factor (TNF) expression in these organoids on induction of ER stress with tunicamycin. Injection of mice with inhibitors of ACSL1 or CSNK2B significantly reduced tunicamycin-mediated intestinal inflammation and IEC death and expression of CXCL1 and TNF in Atg16l1ΔIEC mice. Purified ileal IECs from patients with CD had higher levels of ATF6, CSNK2B, and HSPA5 messenger RNAs than controls; early-passage organoids from patients with active CD show increased levels of activated ATF6 protein, incubation of these organoids with inhibitors of ACSL1 or CSNK2B reduced transcription of ATF6 target genes, including TNF. CONCLUSIONS: Ileal IECs from patients with CD have higher levels of activated ATF6, which is regulated by CSNK2B and HSPA5. ATF6 increases expression of TNF and other inflammatory cytokines in response to ER stress in these cells and in organoids from Atg16l1ΔIEC and Xbp1ΔIEC mice. Strategies to inhibit the ATF6 signaling pathway might be developed for treatment of inflammatory bowel diseases.


Assuntos
Fator 6 Ativador da Transcrição/metabolismo , Estresse do Retículo Endoplasmático/fisiologia , Células Epiteliais/patologia , Íleo/metabolismo , Íleo/patologia , Doenças Inflamatórias Intestinais/metabolismo , Animais , Autofagia , Células CACO-2 , Técnicas de Cultura de Células , Chaperona BiP do Retículo Endoplasmático , Células HEK293 , Humanos , Doenças Inflamatórias Intestinais/etiologia , Doenças Inflamatórias Intestinais/patologia , Mucosa Intestinal/patologia , Camundongos , Transdução de Sinais
6.
Exp Lung Res ; 47(7): 344-353, 2021 09.
Artigo em Inglês | MEDLINE | ID: mdl-34405744

RESUMO

PURPOSE OF THE STUDY: The involvement of the IL-23/IL23R pathway is well known in the disease pathogenesis of sarcoidosis and other inflammatory diseases. To date, the pathogenic mechanism of IL-23 is most notably described on CD4+ Th17 lymphocytes. However, the function of the IL23R on myeloid cells in sarcoidosis is poorly understood. Thus, the aim of the study is to investigate the role of the IL23R on myeloid cell in pulmonary granuloma formation. Methods: We generated IL23RLysMCre mice lacking the IL23R gene in myeloid cells. The importance of IL23R in myeloid cells for the development of sarcoidosis was studied in a mouse model of inflammatory lung granuloma formation through embolization of PPD from Mycobacterium bovis-coated Sepharose beads into previously PPD-immunized mice. In addition the function of IL23R on myeloid cells was studied in LPS or IFNγ stimulated BMDMs and BMDCs. The mRNA and protein expression levels of relevant cytokines were analyzed by RT-PCR (TaqMan) and ELISA. The composition of immune cells in BALF was quantified by flow cytometry and alteration in granuloma sizes were observed by H&E stained lung sections. Results: Mycobacterium Ag-elicted pulmonary granulomas tend to be smaller in IL23RLysMCre mice and NF-κB dependent Th1 cytokines in the murine lungs are reduced compared to wildtype mice. In line, we observed that IL23R-deficient bone marrow-derived macrophages show a reduced production of Th1 cytokines after LPS stimulation. Conclusion: We here for the first time demonstrate a role for IL23R on myeloid cells in pulmonary inflammation and granuloma formation. Our findings provide essential insights in the pathogenesis of inflammatory lung diseases like sarcoidosis, which might be useful for the development of novel therapeutics targeting distinct immunological pathways like IL-23/IL23R.


Assuntos
Granuloma , Pneumonia , Receptores de Interleucina/imunologia , Sarcoidose/imunologia , Animais , Citocinas , Granuloma/imunologia , Pulmão , Macrófagos , Camundongos , Pneumonia/imunologia
7.
Gut ; 68(1): 25-39, 2019 01.
Artigo em Inglês | MEDLINE | ID: mdl-29730603

RESUMO

OBJECTIVE: Vedolizumab, a monoclonal antibody directed against the integrin heterodimer α4ß7, is approved for the treatment of Crohn's disease and ulcerative colitis. The efficacy of vedolizumab has been suggested to result from inhibition of intestinal T cell trafficking although human data to support this conclusion are scarce. We therefore performed a comprehensive analysis of vedolizumab-induced alterations in mucosal and systemic immunity in patients with inflammatory bowel disease (IBD), using anti-inflammatory therapy with the TNFα antibody infliximab as control. DESIGN: Immunophenotyping, immunohistochemistry, T cell receptor profiling and RNA sequencing were performed using blood and colonic biopsies from patients with IBD before and during treatment with vedolizumab (n=18) or, as control, the anti-TNFα antibody infliximab (n=20). Leucocyte trafficking in vivo was assessed using single photon emission computed tomography and endomicroscopy. RESULTS: Vedolizumab was not associated with alterations in the abundance or phenotype of lamina propria T cells and did not affect the mucosal T cell repertoire or leucocyte trafficking in vivo. Surprisingly, however, α4ß7 antibody treatment was associated with substantial effects on innate immunity including changes in macrophage populations and pronounced alterations in the expression of molecules involved in microbial sensing, chemoattraction and regulation of the innate effector response. These effects were specific to vedolizumab, not observed in response to the TNFα antibody infliximab, and associated with inhibition of intestinal inflammation. CONCLUSION: Our findings suggest that modulation of innate immunity contributes to the therapeutic efficacy of vedolizumab in IBD. TRIAL REGISTRATION NUMBER: NCT02694588.


Assuntos
Imunidade Adaptativa/efeitos dos fármacos , Anticorpos Monoclonais Humanizados/uso terapêutico , Fármacos Gastrointestinais/uso terapêutico , Imunidade Inata/efeitos dos fármacos , Doenças Inflamatórias Intestinais/tratamento farmacológico , Doenças Inflamatórias Intestinais/imunologia , Adulto , Biópsia , Estudos de Casos e Controles , Feminino , Humanos , Imuno-Histoquímica , Imunofenotipagem , Infliximab/uso terapêutico , Integrinas/antagonistas & inibidores , Masculino , Fenótipo , Estudos Prospectivos , Análise de Sequência de RNA , Linfócitos T/imunologia , Tomografia Computadorizada de Emissão de Fóton Único
8.
Nucleic Acids Res ; 45(16): 9290-9301, 2017 Sep 19.
Artigo em Inglês | MEDLINE | ID: mdl-28934507

RESUMO

With this study, we provide a comprehensive reference dataset of detailed miRNA expression profiles from seven types of human peripheral blood cells (NK cells, B lymphocytes, cytotoxic T lymphocytes, T helper cells, monocytes, neutrophils and erythrocytes), serum, exosomes and whole blood. The peripheral blood cells from buffy coats were typed and sorted using FACS/MACS. The overall dataset was generated from 450 small RNA libraries using high-throughput sequencing. By employing a comprehensive bioinformatics and statistical analysis, we show that 3' trimming modifications as well as composition of 3' added non-templated nucleotides are distributed in a lineage-specific manner-the closer the hematopoietic progenitors are, the higher their similarities in sequence variation of the 3' end. Furthermore, we define the blood cell-specific miRNA and isomiR expression patterns and identify novel cell type specific miRNA candidates. The study provides the most comprehensive contribution to date towards a complete miRNA catalogue of human peripheral blood, which can be used as a reference for future studies. The dataset has been deposited in GEO and also can be explored interactively following this link: http://134.245.63.235/ikmb-tools/bloodmiRs.


Assuntos
Células Sanguíneas/metabolismo , MicroRNAs/sangue , Linhagem da Célula , Eritrócitos/metabolismo , Exossomos/metabolismo , Humanos , Linfócitos/metabolismo , MicroRNAs/química , Células Mieloides/metabolismo , Análise de Sequência de RNA , Transcriptoma
9.
Biochim Biophys Acta Mol Cell Res ; 1864(11 Pt B): 2183-2190, 2017 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-28736290

RESUMO

Endoplasmic reticulum (ER) stress and autophagy are tightly controlled cellular processes, which are responsible for maintaining protein homeostasis in a cell. Impairment of the interlinking pathways have been implicated in a number of human diseases, prominently in inflammatory bowel disease, where genetic variants in several independent autophagy and ER stress related loci have been associated to increased disease risk. Autophagy is a selective quality control process, which governs the integrity of the cell by removal of aged organelles and proteins via the lysosome, but recently has been shown to actively license the outcome of other signaling pathways by guiding the proteolytic removal of signaling protein complexes (adaptophagy). In this review, we summarize our knowledge on regulated proteolytic events involved in ER stress responses and autophagy, their interplay and potential regulatory effects with a particular focus on intestinal inflammation. This article is part of a Special Issue entitled: Proteolysis as a Regulatory Event in Pathophysiology edited by Stefan Rose-John.


Assuntos
Autofagia/genética , Estresse do Retículo Endoplasmático/genética , Doenças Inflamatórias Intestinais/genética , Proteólise , Humanos , Doenças Inflamatórias Intestinais/patologia , Mucosa Intestinal/metabolismo , Intestinos/patologia , Lisossomos/metabolismo , Transdução de Sinais
10.
Proc Natl Acad Sci U S A ; 109(52): 21426-31, 2012 Dec 26.
Artigo em Inglês | MEDLINE | ID: mdl-23213202

RESUMO

The intracellular nucleotide-binding oligomerization domain-2 (NOD2) receptor detects bacteria-derived muramyl dipeptide (MDP) and activates the transcription factor NF-κB. Here we describe the regulatome of NOD2 signaling using a systematic RNAi screen. Using three consecutive screens, we identified a set of 20 positive NF-κB regulators including the known pathway members RIPK2, RELA, and BIRC4 (XIAP) as well as FRMPD2 (FERM and PDZ domain-containing 2). FRMPD2 interacts with NOD2 via leucine-rich repeats and forms a complex with the membrane-associated protein ERBB2IP. We demonstrate that FRMPD2 spatially assembles the NOD2-signaling complex, hereby restricting NOD2-mediated immune responses to the basolateral compartment of polarized intestinal epithelial cells. We show that genetic truncation of the NOD2 leucine-rich repeat domain, which is associated with Crohn disease, impairs the interaction with FRMPD2, and that intestinal inflammation leads to down-regulation of FRMPD2. These results suggest a structural mechanism for how polarity of epithelial cells acts on intestinal NOD-like receptor signaling to mediate spatial specificity of bacterial recognition and control of immune responses.


Assuntos
Acetilmuramil-Alanil-Isoglutamina/metabolismo , Proteína Adaptadora de Sinalização NOD2/metabolismo , Interferência de RNA , Transdução de Sinais , Acetilmuramil-Alanil-Isoglutamina/farmacologia , Células CACO-2 , Membrana Celular/efeitos dos fármacos , Membrana Celular/metabolismo , Doença de Crohn/metabolismo , Doença de Crohn/patologia , Enterócitos/efeitos dos fármacos , Enterócitos/metabolismo , Células HEK293 , Humanos , Modelos Biológicos , Proteínas Mutantes/metabolismo , NF-kappa B/metabolismo , Proteína Adaptadora de Sinalização NOD2/química , Ligação Proteica/efeitos dos fármacos , Estrutura Terciária de Proteína , RNA Interferente Pequeno/metabolismo , Proteína Serina-Treonina Quinase 2 de Interação com Receptor/metabolismo , Reprodutibilidade dos Testes , Transdução de Sinais/efeitos dos fármacos , Especificidade por Substrato/efeitos dos fármacos , Proteínas de Junções Íntimas/química
11.
Basic Clin Pharmacol Toxicol ; 134(1): 186-192, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-37864290

RESUMO

Duloxetine is metabolized by cytochrome P450 (CYP)1A2 and CYP2D6. The aim of this study was to investigate the effect of the CYP2D6 genotype on duloxetine serum concentration adjusting for age and sex. Patients were included retrospectively from a therapeutic drug monitoring service. Multiple linear regression analysis was used to investigate the effect of CYP2D6 genotype, age and sex on the duloxetine concentration-to-dose (C/D) ratio. In total, 269 patients were included and assigned to the following genotype-predicted phenotype subgroups: CYP2D6 poor metabolizers (PMs, n = 23), intermediate metabolizers (IMs, n = 121), normal metabolizers (NMs, n = 120) and ultrarapid metabolizers (UMs, n = 5). Multiple linear regression analysis revealed a 95% higher duloxetine C/D ratio in PMs compared with NMs (p = 0.009). Patients ≥65 years had a 56% higher C/D ratio than younger patients (p = 0.01), while women had a 46% higher C/D ratio than men (p = 0.04). In conclusion, the CYP2D6 PM phenotype is associated with a twofold higher concentration at recommended dosing compared with the NM phenotype. CYP2D6 PM females above 65 years are at particular risk of high duloxetine levels as they may obtain a threefold higher C/D ratio compared with younger, male NMs.


Assuntos
Citocromo P-450 CYP2D6 , Humanos , Masculino , Feminino , Citocromo P-450 CYP2D6/genética , Citocromo P-450 CYP2D6/metabolismo , Cloridrato de Duloxetina , Estudos Retrospectivos , Genótipo , Fenótipo
12.
G3 (Bethesda) ; 13(1)2023 01 12.
Artigo em Inglês | MEDLINE | ID: mdl-36413074

RESUMO

Viruses and bacteriophages have a strong impact on intestinal barrier function and the composition and functional properties of commensal bacterial communities. Shifts of the fecal virome might be involved in human diseases, including inflammatory bowel disease (IBD). Loss-of-function variants in the nucleotide-binding oligomerization domain-containing protein 2 (NOD2) gene are associated with an increased risk of developing Crohn's disease, a subtype of human chronic IBD, where specific changes in fecal viral communities have also been described. To improve our understanding of the dynamics of the enteric virome, we longitudinally characterized the virome in fecal samples from wild-type C57BL/6J and NOD2 knock-out mice in response to an antibiotic perturbation. Sequencing of virus-like particles demonstrated both a high diversity and high interindividual variation of the murine fecal virome composed of eukaryotic viruses and bacteriophages. Antibiotics had a significant impact on the fecal murine virome. Viral community composition only partially recovered in the observation period (10 weeks after cessation of antibiotics) irrespective of genotype. However, compositional shifts in the virome and bacteriome were highly correlated, suggesting that the loss of specific phages may contribute to prolonged dysregulation of the bacterial community composition. We suggest that therapeutic interference with the fecal virome may represent a novel approach in microbiota-targeted therapies.


Assuntos
Bacteriófagos , Doenças Inflamatórias Intestinais , Vírus , Animais , Humanos , Camundongos , Antibacterianos/farmacologia , Camundongos Endogâmicos C57BL , Vírus/genética , Bacteriófagos/genética , Bactérias/genética
13.
Epigenetics Chromatin ; 16(1): 30, 2023 Jul 06.
Artigo em Inglês | MEDLINE | ID: mdl-37415213

RESUMO

Fatty liver disease or the accumulation of fat in the liver, has been reported to affect the global population. This comes with an increased risk for the development of fibrosis, cirrhosis, and hepatocellular carcinoma. Yet, little is known about the effects of a diet containing high fat and alcohol towards epigenetic aging, with respect to changes in transcriptional and epigenomic profiles. In this study, we took up a multi-omics approach and integrated gene expression, methylation signals, and chromatin signals to study the epigenomic effects of a high-fat and alcohol-containing diet on mouse hepatocytes. We identified four relevant gene network clusters that were associated with relevant pathways that promote steatosis. Using a machine learning approach, we predict specific transcription factors that might be responsible to modulate the functionally relevant clusters. Finally, we discover four additional CpG loci and validate aging-related differential CpG methylation. Differential CpG methylation linked to aging showed minimal overlap with altered methylation in steatosis.


Assuntos
Epigenômica , Hepatócitos , Camundongos , Animais , Hepatócitos/metabolismo , Fígado/metabolismo , Etanol , Epigênese Genética , Metilação de DNA
14.
Cell Commun Signal ; 9: 7, 2011 Apr 08.
Artigo em Inglês | MEDLINE | ID: mdl-21477291

RESUMO

The TNF receptor superfamily member CD95 (Fas, APO-1, TNFRSF6) is known as the prototypic death receptor in and outside the immune system. In fact, many mechanisms involved in apoptotic signaling cascades were solved by addressing consequences and pathways initiated by CD95 ligation in activated T cells or other "CD95-sensitive" cell populations. As an example, the binding of the inducible CD95 ligand (CD95L) to CD95 on activated T lymphocytes results in apoptotic cell death. This activation-induced cell death was implicated in the control of immune cell homeostasis and immune response termination. Over the past years, however, it became evident that CD95 acts as a dual function receptor that also exerts anti-apoptotic effects depending on the cellular context. Early observations of a potential non-apoptotic role of CD95 in the growth control of resting T cells were recently reconsidered and revealed quite unexpected findings regarding the costimulatory capacity of CD95 for primary T cell activation. It turned out that CD95 engagement modulates TCR/CD3-driven signal initiation in a dose-dependent manner. High doses of immobilized CD95 agonists or cellular CD95L almost completely silence T cells by blocking early TCR-induced signaling events. In contrast, under otherwise unchanged conditions, lower amounts of the same agonists dramatically augment TCR/CD3-driven activation and proliferation. In the present overview, we summarize these recent findings with a focus on the costimulatory capacity of CD95 in primary T cells and discuss potential implications for the T cell compartment and the interplay between T cells and CD95L-expressing cells including antigen-presenting cells.

15.
Cell Rep ; 36(8): 109526, 2021 08 24.
Artigo em Inglês | MEDLINE | ID: mdl-34433051

RESUMO

Epigenetic modifications (e.g. DNA methylation) in NAFLD and their contribution to disease progression and extrahepatic complications are poorly explored. Here, we use an integrated epigenome and transcriptome analysis of mouse NAFLD hepatocytes and identify alterations in glyoxylate metabolism, a pathway relevant in kidney damage via oxalate release-a harmful waste product and kidney stone-promoting factor. Downregulation and hypermethylation of alanine-glyoxylate aminotransferase (Agxt), which detoxifies glyoxylate, preventing excessive oxalate accumulation, is accompanied by increased oxalate formation after metabolism of the precursor hydroxyproline. Viral-mediated Agxt transfer or inhibiting hydroxyproline catabolism rescues excessive oxalate release. In human steatotic hepatocytes, AGXT is also downregulated and hypermethylated, and in NAFLD adolescents, steatosis severity correlates with urinary oxalate excretion. Thus, this work identifies a reduced capacity of the steatotic liver to detoxify glyoxylate, triggering elevated oxalate, and provides a mechanistic explanation for the increased risk of kidney stones and chronic kidney disease in NAFLD patients.


Assuntos
Epigenoma , Glioxilatos/metabolismo , Hepatócitos/metabolismo , Hiperoxalúria/metabolismo , Hepatopatia Gordurosa não Alcoólica/metabolismo , Transcriptoma , Animais , Epigenômica , Perfilação da Expressão Gênica , Humanos , Hiperoxalúria/genética , Masculino , Camundongos , Camundongos Obesos , Hepatopatia Gordurosa não Alcoólica/genética , Fatores de Risco
16.
Int Immunol ; 21(5): 587-98, 2009 May.
Artigo em Inglês | MEDLINE | ID: mdl-19332441

RESUMO

Activation of resting T cells in vitro is triggered by combined TCR and CD28 engagement and can be modulated by simultaneous ligation of various other surface receptors. Although the Fas ligand (FasL) is best known for its capacity to initiate cell death in Fas-bearing cells, it has recently been implicated in the regulation of T cell activation. Thus, a cross-talk between the TCR and FasL is likely, but far from being biochemically elucidated. We now report that FasL engagement by immobilized but not soluble FasFc fusion protein and anti-FasL polyclonal antibody blocks the activation of human peripheral T cells even in the presence of CD28 co-stimulation. The data presented here stress the importance of the Fas/FasL system for signal initiation via the TCR-CD3 complex and provide further arguments for a retrograde signaling capacity of FasL or a crucial role of Fas as a co-stimulatory molecule.


Assuntos
Antígenos CD28/fisiologia , Linfócitos T CD4-Positivos/imunologia , Linfócitos T CD8-Positivos/imunologia , Proteína Ligante Fas/fisiologia , Ativação Linfocitária , Receptores de Antígenos de Linfócitos T/fisiologia , Complexo CD3/fisiologia , Linfócitos T CD4-Positivos/efeitos dos fármacos , Linfócitos T CD8-Positivos/efeitos dos fármacos , Linhagem Celular , Humanos , Fosforilação/efeitos dos fármacos , Fosforilação/fisiologia , Receptores de Antígenos de Linfócitos T/efeitos dos fármacos , Proteínas Recombinantes de Fusão/farmacologia , Transdução de Sinais/efeitos dos fármacos , Transdução de Sinais/fisiologia
17.
Cell Mol Gastroenterol Hepatol ; 10(2): 365-389, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32289499

RESUMO

BACKGROUND & AIMS: Loss-of-function variants in nucleotide-binding oligomerization domain-containing protein 2 (NOD2) impair the recognition of the bacterial cell wall component muramyl-dipeptide and are associated with an increased risk for developing Crohn's disease. Likewise, exposure to antibiotics increases the individual risk for developing inflammatory bowel disease. Here, we studied the long-term impact of NOD2 on the ability of the gut bacterial and fungal microbiota to recover after antibiotic treatment. METHODS: Two cohorts of 20-week-old and 52-week-old wild-type (WT) C57BL/6J and NOD2 knockout (Nod2-KO) mice were treated with broad-spectrum antibiotics and fecal samples were collected to investigate temporal dynamics of the intestinal microbiota (bacteria and fungi) using 16S ribosomal RNA and internal transcribed spacer 1 sequencing. In addition, 2 sets of germ-free WT mice were colonized with either WT or Nod2-KO after antibiotic donor microbiota and the severity of intestinal inflammation was monitored in the colonized mice. RESULTS: Antibiotic exposure caused long-term shifts in the bacterial and fungal community composition. Genetic ablation of NOD2 was associated with delayed body weight gain after antibiotic treatment and an impaired recovery of the bacterial gut microbiota. Transfer of the postantibiotic fecal microbiota of Nod2-KO mice induced an intestinal inflammatory response in the colons of germ-free recipient mice compared with respective microbiota from WT controls based on histopathology and gene expression analyses. CONCLUSIONS: Our data show that the bacterial sensor NOD2 contributes to intestinal microbial community composition after antibiotic treatment and may add to the explanation of how defects in the NOD2 signaling pathway are involved in the etiology of Crohn's disease.


Assuntos
Antibacterianos/efeitos adversos , Doença de Crohn/genética , Disbiose/induzido quimicamente , Microbioma Gastrointestinal/imunologia , Proteína Adaptadora de Sinalização NOD2/deficiência , Animais , Doença de Crohn/imunologia , Doença de Crohn/microbiologia , DNA Bacteriano/isolamento & purificação , DNA Fúngico/isolamento & purificação , Modelos Animais de Doenças , Disbiose/genética , Disbiose/imunologia , Disbiose/microbiologia , Transplante de Microbiota Fecal , Fezes/microbiologia , Microbioma Gastrointestinal/efeitos dos fármacos , Vida Livre de Germes , Humanos , Mucosa Intestinal/imunologia , Mucosa Intestinal/microbiologia , Mutação com Perda de Função , Camundongos , Camundongos Knockout , Proteína Adaptadora de Sinalização NOD2/genética , RNA Ribossômico 16S/genética , Transdução de Sinais/imunologia
18.
Nat Commun ; 10(1): 4877, 2019 10 25.
Artigo em Inglês | MEDLINE | ID: mdl-31653831

RESUMO

The interaction between the mammalian host and its resident gut microbiota is known to license adaptive immune responses. Nutritional constituents strongly influence composition and functional properties of the intestinal microbial communities. Here, we report that omission of a single essential amino acid - tryptophan - from the diet abrogates CNS autoimmunity in a mouse model of multiple sclerosis. Dietary tryptophan restriction results in impaired encephalitogenic T cell responses and is accompanied by a mild intestinal inflammatory response and a profound phenotypic shift of gut microbiota. Protective effects of dietary tryptophan restriction are abrogated in germ-free mice, but are independent of canonical host sensors of intracellular tryptophan metabolites. We conclude that dietary tryptophan restriction alters metabolic properties of gut microbiota, which in turn have an impact on encephalitogenic T cell responses. This link between gut microbiota, dietary tryptophan and adaptive immunity may help to develop therapeutic strategies for protection from autoimmune neuroinflammation.


Assuntos
Autoimunidade/imunologia , Dieta , Encefalomielite Autoimune Experimental/imunologia , Microbioma Gastrointestinal/imunologia , Linfócitos T/imunologia , Triptofano , Animais , Proteínas Alimentares , Modelos Animais de Doenças , Encefalomielite Autoimune Experimental/microbiologia , Microbioma Gastrointestinal/genética , Camundongos , Esclerose Múltipla , RNA Ribossômico 16S/genética
19.
Curr Med Chem ; 15(17): 1684-96, 2008.
Artigo em Inglês | MEDLINE | ID: mdl-18673218

RESUMO

The TNF family member Fas ligand (FasL) induces apoptosis in Fas-expressing cells and serves as a key death factor in the immune system. It is involved in the termination of immune responses by activation-induced cell death, the selection of thymocytes and T and NK cell-mediated cytotoxicity. FasL also participates in the establishment of immune privilege and contributes to tumor cell survival. Besides its death-inducing capacity, FasL has been implicated in retrograde signal transduction into FasL expressing cells by so-called "reverse signalling". In this context, FasL may also act as an accessory/costimulatory molecule. Dysregulation within the Fas/FasL-system manifests in a severe impairment of the functional integrity and maintenance of immune homeostasis. As its receptor Fas is abundantly expressed in several tissues, the expression of FasL has to be tightly regulated to prevent unwanted damage. At the post-transcriptional level, this is achieved by several independent mechanisms, for example the safe intracellular storage, an activation-dependent mobilization, the association with lipid rafts and the shedding by metalloproteases. Of interest, the intracellular portion of FasL contains a unique proline-rich domain, which plays a major role in the control of FasL transport and expression due to interactions with proteins containing SH3 or WW interaction domains. The detailed analysis of FasL-interacting proteins and their functional characterization provided novel insights into the complex processes regulating FasL expression and signal transduction. This knowledge should allow to improve Fas/FasL-based therapeutical approaches that are currently under development.


Assuntos
Proteínas Reguladoras de Apoptose/imunologia , Proteínas Reguladoras de Apoptose/metabolismo , Proteína Ligante Fas/imunologia , Proteína Ligante Fas/metabolismo , Linfócitos/imunologia , Linfócitos/metabolismo , Animais , Apoptose , Humanos , Ligação Proteica , Transdução de Sinais
20.
Cell Commun Signal ; 6: 11, 2008 Dec 29.
Artigo em Inglês | MEDLINE | ID: mdl-19114018

RESUMO

The TNF superfamily member Fas ligand acts as a prototypic death factor. Due to its ability to induce apoptosis in Fas (APO-1, CD95) expressing cells, Fas ligand participates in essential effector functions of the immune system. It is involved in natural killer cell- and T cell-mediated cytotoxicity, the establishment of immune privilege, and in termination of immune responses by induction of activation-induced cell death. In addition, Fas ligand-positive tumours may evade immune surveillance by killing Fas-positive tumour-infiltrating cells. Given these strong cytotoxic capabilities of Fas ligand, it is obvious that its function has to be strictly regulated to avoid uncontrolled damage. In hematopoietic cells, the death factor is stored in secretory lysosomes and is mobilised to the immunological synapse only upon activation. The selective sorting to and the release from this specific lysosomal compartment requires interactions of the Fas ligand cytosolic moiety, which mediates binding to various adapter proteins involved in trafficking and cytoskeletal reorganisation. In addition, Fas ligand surface expression is further regulated by posttranslational ectodomain shedding and subsequent regulated intramembrane proteolysis, releasing a soluble ectodomain cytokine into the extracellular space and an N-terminal fragment with a potential role in intracellular signalling processes. Moreover, other posttranslational modifications of the cytosolic domain, including phosphorylation and ubiquitylation, have been described to affect various aspects of Fas ligand biology. Since FasL is regarded as a potential target for immunotherapy, the further characterisation of its biological regulation and function will be of great importance for the development and evaluation of future therapeutic strategies.

SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa