Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Eur J Clin Invest ; 54(4): e14137, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38012826

RESUMO

BACKGROUND: Atrial fibrillation (AF) is the most common arrhythmia and is associated with considerable morbidity and mortality. Ischaemic heart failure (IHF) remains one of the most common causes of AF in clinical practice. However, ischaemia-mediated mechanisms leading to AF are still incompletely understood, and thus, current treatment approaches are limited. To improve our understanding of the pathophysiology, we studied a porcine IHF model. METHODS: In pigs, IHF was induced by balloon occlusion of the left anterior descending artery for 90 min. After 30 days of reperfusion, invasive haemodynamic measurements and electrophysiological studies were performed. Masson trichrome and immunofluorescence staining were conducted to assess interstitial fibrosis and myofibroblast activation in different heart regions. RESULTS: After 30 days of reperfusion, heart failure with significantly reduced ejection fraction (left anterior obique 30°, 34.78 ± 3.29% [IHF] vs. 62.03 ± 2.36% [control], p < .001; anterior-posterior 0°, 29.16 ± 3.61% vs. 59.54 ± 1.09%, p < .01) was observed. These pigs showed a significantly higher susceptibility to AF (33.90% [IHF] vs. 12.98% [control], p < .05). Histological assessment revealed aggravated fibrosis in atrial appendages but not in atrial free walls in IHF pigs (11.13 ± 1.44% vs. 5.99 ± .86%, p < .01 [LAA], 8.28 ± .56% vs. 6.01 ± .35%, p < .01 [RAA]), which was paralleled by enhanced myofibroblast activation (12.09 ± .65% vs. 9.00 ± .94%, p < .05 [LAA], 14.37 ± .60% vs. 10.30 ± 1.41%, p < .05 [RAA]). Correlation analysis indicated that not fibrosis per se but its cross-regional heterogeneous distribution across the left atrium was associated with AF susceptibility (r = .6344, p < .01). CONCLUSION: Our results suggest that left atrial cross-regional fibrosis difference rather than overall fibrosis level is associated with IHF-related AF susceptibility, presumably by establishing local conduction disturbances and heterogeneity.


Assuntos
Fibrilação Atrial , Insuficiência Cardíaca , Suínos , Animais , Fibrilação Atrial/complicações , Átrios do Coração/patologia , Fibrose , Isquemia
2.
J Am Heart Assoc ; 13(9): e032405, 2024 May 07.
Artigo em Inglês | MEDLINE | ID: mdl-38639363

RESUMO

BACKGROUND: Periodic repolarization dynamics (PRD) is an electrocardiographic biomarker that captures repolarization instability in the low frequency spectrum and is believed to estimate the sympathetic effect on the ventricular myocardium. High PRD indicates an increased risk for postischemic sudden cardiac death (SCD). However, a direct link between PRD and proarrhythmogenic autonomic remodeling has not yet been shown. METHODS AND RESULTS: We investigated autonomic remodeling in pigs with myocardial infarction (MI)-related ischemic heart failure induced by balloon occlusion of the left anterior descending artery (n=17) compared with pigs without MI (n=11). Thirty days after MI, pigs demonstrated enhanced sympathetic innervation in the infarct area, border zone, and remote left ventricle paralleled by altered expression of autonomic marker genes/proteins. PRD was enhanced 30 days after MI compared with baseline (pre-MI versus post-MI: 1.75±0.30 deg2 versus 3.29±0.79 deg2, P<0.05) reflecting pronounced autonomic alterations on the level of the ventricular myocardium. Pigs with MI-related ventricular fibrillation and SCD had significantly higher pre-MI PRD than pigs without tachyarrhythmias, suggesting a potential role for PRD as a predictive biomarker for ischemia-related arrhythmias (no ventricular fibrillation versus ventricular fibrillation: 1.50±0.39 deg2 versus 3.18±0.53 deg2 [P<0.05]; no SCD versus SCD: 1.67±0.32 deg2 versus 3.91±0.63 deg2 [P<0.01]). CONCLUSIONS: We demonstrate that ischemic heart failure leads to significant proarrhythmogenic autonomic remodeling. The concomitant elevation of PRD levels in pigs with ischemic heart failure and pigs with MI-related ventricular fibrillation/SCD suggests PRD as a biomarker for autonomic remodeling and as a potential predictive biomarker for ventricular arrhythmias/survival in the context of MI.


Assuntos
Biomarcadores , Morte Súbita Cardíaca , Modelos Animais de Doenças , Eletrocardiografia , Infarto do Miocárdio , Animais , Morte Súbita Cardíaca/etiologia , Infarto do Miocárdio/fisiopatologia , Infarto do Miocárdio/complicações , Suínos , Biomarcadores/sangue , Arritmias Cardíacas/fisiopatologia , Arritmias Cardíacas/etiologia , Fibrilação Ventricular/fisiopatologia , Fibrilação Ventricular/etiologia , Fatores de Risco , Masculino , Remodelação Ventricular , Frequência Cardíaca/fisiologia , Potenciais de Ação , Sistema Nervoso Simpático/fisiopatologia , Sistema Nervoso Autônomo/fisiopatologia
3.
Cells ; 12(7)2023 03 23.
Artigo em Inglês | MEDLINE | ID: mdl-37048048

RESUMO

Atrial fibrillation (AF) is the most prevalent arrhythmia, often caused by myocardial ischemia/infarction (MI). Men have a 1.5× higher prevalence of AF, whereas women show a higher risk for new onset AF after MI. However, the underlying mechanisms of how sex affects AF pathophysiology are largely unknown. In 72 pigs with/without ischemic heart failure (IHF) we investigated the impact of sex on ischemia-induced proarrhythmic atrial remodeling and the susceptibility for AF. Electrocardiogram (ECG) and electrophysiological studies were conducted to assess electrical remodeling; histological analyses were performed to assess atrial fibrosis in male and female pigs. IHF pigs of both sexes showed a significantly increased vulnerability for AF, but in male pigs more and longer episodes were observed. Unchanged conduction properties but enhanced left atrial fibrosis indicated structural rather than electrical remodeling underlying AF susceptibility. Sex differences were only observed in controls with female pigs showing an increased intrinsic heart rate, a prolonged QRS interval and a prolonged sinus node recovery time. In sum, susceptibility for AF is significantly increased both in male and female pigs with ischemic heart failure. Differences between males and females are moderate, including more and longer AF episodes in male pigs and sinus node dysfunction in female pigs.


Assuntos
Fibrilação Atrial , Remodelamento Atrial , Insuficiência Cardíaca , Infarto do Miocárdio , Isquemia Miocárdica , Feminino , Masculino , Animais , Suínos , Isquemia Miocárdica/complicações , Fibrose
4.
Front Physiol ; 13: 900094, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35812333

RESUMO

Cardiac electrophysiology is a complex system established by a plethora of inward and outward ion currents in cardiomyocytes generating and conducting electrical signals in the heart. However, not only cardiomyocytes but also other cell types can modulate the heart rhythm. Recently, cardiac macrophages were demonstrated as important players in both electrophysiology and arrhythmogenesis. Cardiac macrophages are a heterogeneous group of immune cells including resident macrophages derived from embryonic and fetal precursors and recruited macrophages derived from circulating monocytes from the bone marrow. Recent studies suggest antiarrhythmic as well as proarrhythmic effects of cardiac macrophages. The proposed mechanisms of how cardiac macrophages affect electrophysiology vary and include both direct and indirect interactions with other cardiac cells. In this review, we provide an overview of the different subsets of macrophages in the heart and their possible interactions with cardiomyocytes under both physiologic conditions and heart disease. Furthermore, we elucidate similarities and differences between human, murine and porcine cardiac macrophages, thus providing detailed information for researchers investigating cardiac macrophages in important animal species for electrophysiologic research. Finally, we discuss the pros and cons of mice and pigs to investigate the role of cardiac macrophages in arrhythmogenesis from a translational perspective.

5.
Lab Anim (NY) ; 51(2): 46-67, 2022 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-35087256

RESUMO

Over the past years, the use of large animals has become increasingly interesting in translational research, to bridge the gap between basic research in rodents and targeted therapies in humans. Pigs are highly valued in cardiovascular research because of their anatomical, hemodynamic and electrophysiological features, which closely resemble those of humans. For studying these aspects in swine, cardiac catheterization techniques are essential procedures. Although cardiac catheterization seems to be comparatively easy in pigs as human equipment can be used to perform the procedure, there are some pitfalls. Here we provide a detailed protocol to guide the reader through different aspects of cardiac catheterization in pigs. We suggest an approach for safe intubation and extubation, provide tips for perioperative and postoperative management of the animals and guide the reader through different experimental steps, including sheath insertion. We also describe the procedures for basic electrophysiological assessment of conduction properties and atrial fibrillation induction, hemodynamic assessment via pressure-volume loops, right heart and left heart catheterization and the development of a myocardial infarction model by balloon occlusion. This protocol was developed in Landrace pigs and can be adapted to other pig breeds or other large animal species. This protocol requires approximately six and a half working hours in total and should be performed by researchers with previous experience in large animal experimentation and in the presence of a veterinarian.


Assuntos
Cardiopatias , Infarto do Miocárdio , Animais , Cateterismo Cardíaco/efeitos adversos , Cateterismo Cardíaco/veterinária , Modelos Animais de Doenças , Cardiopatias/complicações , Infarto do Miocárdio/etiologia , Suínos
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa