Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 366
Filtrar
1.
Proc Natl Acad Sci U S A ; 120(42): e2306990120, 2023 10 17.
Artigo em Inglês | MEDLINE | ID: mdl-37831741

RESUMO

Hemispheric lateralization and its origins have been of great interest in neuroscience for over a century. The left-right asymmetry in cortical thickness may stem from differential maturation of the cerebral cortex in the two hemispheres. Here, we investigated the spatial pattern of hemispheric differences in cortical thinning during adolescence, and its relationship with the density of neurotransmitter receptors and homotopic functional connectivity. Using longitudinal data from IMAGEN study (N = 532), we found that many cortical regions in the frontal and temporal lobes thinned more in the right hemisphere than in the left. Conversely, several regions in the occipital and parietal lobes thinned less in the right (vs. left) hemisphere. We then revealed that regions thinning more in the right (vs. left) hemispheres had higher density of neurotransmitter receptors and transporters in the right (vs. left) side. Moreover, the hemispheric differences in cortical thinning were predicted by homotopic functional connectivity. Specifically, regions with stronger homotopic functional connectivity showed a more symmetrical rate of cortical thinning between the left and right hemispheres, compared with regions with weaker homotopic functional connectivity. Based on these findings, we suggest that the typical patterns of hemispheric differences in cortical thinning may reflect the intrinsic organization of the neurotransmitter systems and related patterns of homotopic functional connectivity.


Assuntos
Mapeamento Encefálico , Afinamento Cortical Cerebral , Adolescente , Humanos , Vias Neurais/fisiologia , Imageamento por Ressonância Magnética , Lateralidade Funcional/fisiologia , Receptores de Neurotransmissores , Encéfalo/fisiologia
2.
J Neurosci ; 44(41)2024 Oct 09.
Artigo em Inglês | MEDLINE | ID: mdl-39214708

RESUMO

During adolescence, cannabis experimentation is common, and its association with interindividual variations in brain maturation well studied. Cellular and molecular underpinnings of these system-level relationships are, however, unclear. We thus conducted a three-step study. First, we exposed adolescent male mice to Δ-9-tetrahydrocannabinol (THC) or a synthetic cannabinoid WIN 55,212-2 (WIN) and assessed differentially expressed genes (DEGs), spine numbers, and dendritic complexity in their frontal cortex. Second, in human (male) adolescents, we examined group differences in cortical thickness in 34 brain regions, using magnetic resonance imaging, between those who experimented with cannabis before age 16 (n = 140) and those who did not (n = 327). Finally, we correlated spatially these group differences with gene expression of human homologs of mouse-identified DEGs. The spatial expression of 13 THC-related human homologs of DEGs correlated with cannabis-related variations in cortical thickness, and virtual histology revealed coexpression patterns of these 13 genes with cell-specific markers of astrocytes, microglia, and a type of pyramidal cells enriched in dendrite-regulating genes. Similarly, the spatial expression of 18 WIN-related human homologs of DEGs correlated with group differences in cortical thickness and showed coexpression patterns with the same three cell types. Gene ontology analysis indicated that 37 THC-related human homologs are enriched in neuron projection development, while 33 WIN-related homologs are enriched in processes associated with learning and memory. In mice, we observed spine loss and lower dendritic complexity in pyramidal cells of THC-exposed animals (vs controls). Experimentation with cannabis during adolescence may influence cortical thickness by impacting glutamatergic synapses and dendritic arborization.


Assuntos
Benzoxazinas , Dronabinol , Naftalenos , Masculino , Animais , Adolescente , Camundongos , Humanos , Dronabinol/farmacologia , Naftalenos/farmacologia , Benzoxazinas/farmacologia , Morfolinas/farmacologia , Córtex Cerebral/efeitos dos fármacos , Córtex Cerebral/crescimento & desenvolvimento , Córtex Cerebral/metabolismo , Córtex Cerebral/diagnóstico por imagem , Camundongos Endogâmicos C57BL , Dendritos/efeitos dos fármacos , Espessura Cortical do Cérebro , Imageamento por Ressonância Magnética , Cannabis , Espinhas Dendríticas/efeitos dos fármacos
3.
Mol Psychiatry ; 2024 Jul 02.
Artigo em Inglês | MEDLINE | ID: mdl-38956372

RESUMO

Perseverative negative thoughts, known as rumination, might arise from emotional challenges and preclude mental health when transitioning into adulthood. Due to its multifaceted nature, rumination can take several ruminative response styles, that diverge in manifestations, severity, and mental health outcomes. Still, prospective ruminative phenotypes remain elusive insofar. Longitudinal study designs are ideal for stratifying ruminative response styles, especially with resting-state functional MRI whose setup naturally elicits people's ruminative traits. Here, we considered self-rated questionnaires on rumination and psychopathology, along with resting-state functional MRI data in 595 individuals assessed at age 18 and 22 from the IMAGEN cohort. We conducted independent component analysis to characterize eight single static resting-state functional networks in each subject and session and furthermore conducted a dynamic analysis, tackling the time variations of functional networks during the entire scanning time. We then investigated their longitudinal mediation role between changes in three ruminative response styles (reflective pondering, brooding, and depressive rumination) and changes in internalizing and co-morbid externalizing symptoms. Four static and two dynamic networks longitudinally differentiated these ruminative styles and showed complemental sensitivity to internalizing and co-morbid externalizing symptoms. Among these networks, the right frontoparietal network covaried with all ruminative styles but did not play any mediation role towards psychopathology. The default mode, the salience, and the limbic networks prospectively stratified these ruminative styles, suggesting that maladaptive ruminative styles are associated with altered corticolimbic function. For static measures, only the salience network played a longitudinal causal role between brooding rumination and internalizing symptoms. Dynamic measures highlighted the default-mode mediation role between the other ruminative styles and co-morbid externalizing symptoms. In conclusion, we identified the ruminative styles' psychometric and neural outcome specificities, supporting their translation into applied research on young adult mental healthcare.

4.
Am J Epidemiol ; 2024 Sep 24.
Artigo em Inglês | MEDLINE | ID: mdl-39317697

RESUMO

Little is known about whether prenatal green space exposure contributes to mental health later in life. Using data from a Dutch cohort (TRAILS; n=1,476), we assessed associations between prenatal (1989-1991) green space exposure and four mental health outcomes, namely externalizing problems, internalizing problems, tobacco use, and alcohol use, self-reported at eleven-year-old (2001-2002), and mediation of gestational age and birthweight on these associations. In a structural equational model, adolescents with one standard deviation (SD) unit more prenatal green space exposure showed a 0.119 SD (95%CI:0.028,0.210) more externalizing problems in early adolescence. There are two potential explanations for this unexpected positive association. First, controlling for urbanicity attenuated this association to become insignificant, but the degree of attenuation was minor [0.096, (95%CI:-0.003,0.195)]. Second, this unexpected association might be a consequence of changes in green space exposure in the intervening years, namely childhood (from birth to early adolescence), indicating that individuals with increased green space exposure over childhood exhibited fewer externalizing problems in early adolescence. For the prenatal green space-externalizing problems association, we did not observe mediation by gestational age or birthweight. Overall, these findings suggest no beneficial role of prenatal green space on adolescent mental health. Instead, increased green space exposure in childhood may lead to lower externalizing problems in early adolescence.

5.
Artigo em Inglês | MEDLINE | ID: mdl-38663994

RESUMO

BACKGROUND: Alzheimer's disease (AD)-related neuropathological changes can occur decades before clinical symptoms. We aimed to investigate whether neurodevelopment and/or neurodegeneration affects the risk of AD, through reducing structural brain reserve and/or increasing brain atrophy, respectively. METHODS: We used bidirectional two-sample Mendelian randomisation to estimate the effects between genetic liability to AD and global and regional cortical thickness, estimated total intracranial volume, volume of subcortical structures and total white matter in 37 680 participants aged 8-81 years across 5 independent cohorts (Adolescent Brain Cognitive Development, Generation R, IMAGEN, Avon Longitudinal Study of Parents and Children and UK Biobank). We also examined the effects of global and regional cortical thickness and subcortical volumes from the Enhancing NeuroImaging Genetics through Meta-Analysis (ENIGMA) Consortium on AD risk in up to 37 741 participants. RESULTS: Our findings show that AD risk alleles have an age-dependent effect on a range of cortical and subcortical brain measures that starts in mid-life, in non-clinical populations. Evidence for such effects across childhood and young adulthood is weak. Some of the identified structures are not typically implicated in AD, such as those in the striatum (eg, thalamus), with consistent effects from childhood to late adulthood. There was little evidence to suggest brain morphology alters AD risk. CONCLUSIONS: Genetic liability to AD is likely to affect risk of AD primarily through mechanisms affecting indicators of brain morphology in later life, rather than structural brain reserve. Future studies with repeated measures are required for a better understanding and certainty of the mechanisms at play.

6.
Brain Behav Immun ; 119: 637-647, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38663773

RESUMO

Obesity is a major modifiable risk factor for Alzheimer's disease (AD), characterized by progressive atrophy of the cerebral cortex. The neurobiology of obesity contributions to AD is poorly understood. Here we show with in vivo MRI that diet-induced obesity decreases cortical volume in mice, and that higher body adiposity associates with lower cortical volume in humans. Single-nuclei transcriptomics of the mouse cortex reveals that dietary obesity promotes an array of neuron-adverse transcriptional dysregulations, which are mediated by an interplay of excitatory neurons and glial cells, and which involve microglial activation and lowered neuronal capacity for neuritogenesis and maintenance of membrane potential. The transcriptional dysregulations of microglia, more than of other cell types, are like those in AD, as assessed with single-nuclei cortical transcriptomics in a mouse model of AD and two sets of human donors with the disease. Serial two-photon tomography of microglia demonstrates microgliosis throughout the mouse cortex. The spatial pattern of adiposity-cortical volume associations in human cohorts interrogated together with in silico bulk and single-nucleus transcriptomic data from the human cortex implicated microglia (along with other glial cells and subtypes of excitatory neurons), and it correlated positively with the spatial profile of cortical atrophy in patients with mild cognitive impairment and AD. Thus, multi-cell neuron-adverse dysregulations likely contribute to the loss of cortical tissue in obesity. The dysregulations of microglia may be pivotal to the obesity-related risk of AD.


Assuntos
Doença de Alzheimer , Córtex Cerebral , Obesidade , Animais , Obesidade/metabolismo , Córtex Cerebral/metabolismo , Córtex Cerebral/patologia , Humanos , Camundongos , Doença de Alzheimer/metabolismo , Doença de Alzheimer/patologia , Masculino , Microglia/metabolismo , Neurônios/metabolismo , Feminino , Modelos Animais de Doenças , Camundongos Endogâmicos C57BL , Imageamento por Ressonância Magnética , Disfunção Cognitiva/metabolismo , Disfunção Cognitiva/etiologia , Atrofia , Dieta Hiperlipídica/efeitos adversos , Idoso , Adiposidade , Transcriptoma
7.
Mol Psychiatry ; 28(2): 639-646, 2023 02.
Artigo em Inglês | MEDLINE | ID: mdl-36481929

RESUMO

Recent longitudinal studies in youth have reported MRI correlates of prospective anxiety symptoms during adolescence, a vulnerable period for the onset of anxiety disorders. However, their predictive value has not been established. Individual prediction through machine-learning algorithms might help bridge the gap to clinical relevance. A voting classifier with Random Forest, Support Vector Machine and Logistic Regression algorithms was used to evaluate the predictive pertinence of gray matter volumes of interest and psychometric scores in the detection of prospective clinical anxiety. Participants with clinical anxiety at age 18-23 (N = 156) were investigated at age 14 along with healthy controls (N = 424). Shapley values were extracted for in-depth interpretation of feature importance. Prospective prediction of pooled anxiety disorders relied mostly on psychometric features and achieved moderate performance (area under the receiver operating curve = 0.68), while generalized anxiety disorder (GAD) prediction achieved similar performance. MRI regional volumes did not improve the prediction performance of prospective pooled anxiety disorders with respect to psychometric features alone, but they improved the prediction performance of GAD, with the caudate and pallidum volumes being among the most contributing features. To conclude, in non-anxious 14 year old adolescents, future clinical anxiety onset 4-8 years later could be individually predicted. Psychometric features such as neuroticism, hopelessness and emotional symptoms were the main contributors to pooled anxiety disorders prediction. Neuroanatomical data, such as caudate and pallidum volume, proved valuable for GAD and should be included in prospective clinical anxiety prediction in adolescents.


Assuntos
Transtornos de Ansiedade , Ansiedade , Humanos , Adolescente , Adulto Jovem , Adulto , Estudos Prospectivos , Transtornos de Ansiedade/psicologia , Algoritmos , Aprendizado de Máquina
8.
Mol Psychiatry ; 28(8): 3171-3181, 2023 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-37580524

RESUMO

Most mental disorders have a typical onset between 12 and 25 years of age, highlighting the importance of this period for the pathogenesis, diagnosis, and treatment of mental ill-health. This perspective addresses interactions between risk and protective factors and brain development as key pillars accounting for the emergence of psychopathology in youth. Moreover, we propose that novel approaches towards early diagnosis and interventions are required that reflect the evolution of emerging psychopathology, the importance of novel service models, and knowledge exchange between science and practitioners. Taken together, we propose a transformative early intervention paradigm for research and clinical care that could significantly enhance mental health in young people and initiate a shift towards the prevention of severe mental disorders.


Assuntos
Transtornos Mentais , Saúde Mental , Humanos , Adolescente , Transtornos Mentais/terapia , Transtornos Mentais/diagnóstico , Psicopatologia
9.
Mol Psychiatry ; 2023 Jun 28.
Artigo em Inglês | MEDLINE | ID: mdl-37369720

RESUMO

Leveraging ~10 years of prospective longitudinal data on 704 participants, we examined the effects of adolescent versus young adult cannabis initiation on MRI-assessed cortical thickness development and behavior. Data were obtained from the IMAGEN study conducted across eight European sites. We identified IMAGEN participants who reported being cannabis-naïve at baseline and had data available at baseline, 5-year, and 9-year follow-up visits. Cannabis use was assessed with the European School Survey Project on Alcohol and Drugs. T1-weighted MR images were processed through the CIVET pipeline. Cannabis initiation occurring during adolescence (14-19 years) and young adulthood (19-22 years) was associated with differing patterns of longitudinal cortical thickness change. Associations between adolescent cannabis initiation and cortical thickness change were observed primarily in dorso- and ventrolateral portions of the prefrontal cortex. In contrast, cannabis initiation occurring between 19 and 22 years of age was associated with thickness change in temporal and cortical midline areas. Follow-up analysis revealed that longitudinal brain change related to adolescent initiation persisted into young adulthood and partially mediated the association between adolescent cannabis use and past-month cocaine, ecstasy, and cannabis use at age 22. Extent of cannabis initiation during young adulthood (from 19 to 22 years) had an indirect effect on psychotic symptoms at age 22 through thickness change in temporal areas. Results suggest that developmental timing of cannabis exposure may have a marked effect on neuroanatomical correlates of cannabis use as well as associated behavioral sequelae. Critically, this work provides a foundation for neurodevelopmentally informed models of cannabis exposure in humans.

10.
Mol Psychiatry ; 28(2): 698-709, 2023 02.
Artigo em Inglês | MEDLINE | ID: mdl-36380235

RESUMO

The neurobiological bases of the association between development and psychopathology remain poorly understood. Here, we identify a shared spatial pattern of cortical thickness (CT) in normative development and several psychiatric and neurological disorders. Principal component analysis (PCA) was applied to CT of 68 regions in the Desikan-Killiany atlas derived from three large-scale datasets comprising a total of 41,075 neurotypical participants. PCA produced a spatially broad first principal component (PC1) that was reproducible across datasets. Then PC1 derived from healthy adult participants was compared to the pattern of CT differences associated with psychiatric and neurological disorders comprising a total of 14,886 cases and 20,962 controls from seven ENIGMA disease-related working groups, normative maturation and aging comprising a total of 17,697 scans from the ABCD Study® and the IMAGEN developmental study, and 17,075 participants from the ENIGMA Lifespan working group, as well as gene expression maps from the Allen Human Brain Atlas. Results revealed substantial spatial correspondences between PC1 and widespread lower CT observed in numerous psychiatric disorders. Moreover, the PC1 pattern was also correlated with the spatial pattern of normative maturation and aging. The transcriptional analysis identified a set of genes including KCNA2, KCNS1 and KCNS2 with expression patterns closely related to the spatial pattern of PC1. The gene category enrichment analysis indicated that the transcriptional correlations of PC1 were enriched to multiple gene ontology categories and were specifically over-represented starting at late childhood, coinciding with the onset of significant cortical maturation and emergence of psychopathology during the prepubertal-to-pubertal transition. Collectively, the present study reports a reproducible latent pattern of CT that captures interregional profiles of cortical changes in both normative brain maturation and a spectrum of psychiatric disorders. The pubertal timing of the expression of PC1-related genes implicates disrupted neurodevelopment in the pathogenesis of the spectrum of psychiatric diseases emerging during adolescence.


Assuntos
Transtornos Mentais , Canais de Potássio de Abertura Dependente da Tensão da Membrana , Adulto , Adolescente , Humanos , Criança , Encéfalo , Transtornos Mentais/genética , Transtornos Mentais/patologia , Envelhecimento/genética , Imageamento por Ressonância Magnética , Córtex Cerebral/diagnóstico por imagem , Córtex Cerebral/patologia
11.
Circulation ; 145(14): 1040-1052, 2022 04 05.
Artigo em Inglês | MEDLINE | ID: mdl-35050683

RESUMO

BACKGROUND: White matter hyperintensities (WMH), identified on T2-weighted magnetic resonance images of the human brain as areas of enhanced brightness, are a major risk factor of stroke, dementia, and death. There are no large-scale studies testing associations between WMH and circulating metabolites. METHODS: We studied up to 9290 individuals (50.7% female, average age 61 years) from 15 populations of 8 community-based cohorts. WMH volume was quantified from T2-weighted or fluid-attenuated inversion recovery images or as hypointensities on T1-weighted images. Circulating metabolomic measures were assessed with mass spectrometry and nuclear magnetic resonance spectroscopy. Associations between WMH and metabolomic measures were tested by fitting linear regression models in the pooled sample and in sex-stratified and statin treatment-stratified subsamples. Our basic models were adjusted for age, sex, age×sex, and technical covariates, and our fully adjusted models were also adjusted for statin treatment, hypertension, type 2 diabetes, smoking, body mass index, and estimated glomerular filtration rate. Population-specific results were meta-analyzed using the fixed-effect inverse variance-weighted method. Associations with false discovery rate (FDR)-adjusted P values (PFDR)<0.05 were considered significant. RESULTS: In the meta-analysis of results from the basic models, we identified 30 metabolomic measures associated with WMH (PFDR<0.05), 7 of which remained significant in the fully adjusted models. The most significant association was with higher level of hydroxyphenylpyruvate in men (PFDR.full.adj=1.40×10-7) and in both the pooled sample (PFDR.full.adj=1.66×10-4) and statin-untreated (PFDR.full.adj=1.65×10-6) subsample. In men, hydroxyphenylpyruvate explained 3% to 14% of variance in WMH. In men and the pooled sample, WMH were also associated with lower levels of lysophosphatidylcholines and hydroxysphingomyelins and a larger diameter of low-density lipoprotein particles, likely arising from higher triglyceride to total lipids and lower cholesteryl ester to total lipids ratios within these particles. In women, the only significant association was with higher level of glucuronate (PFDR=0.047). CONCLUSIONS: Circulating metabolomic measures, including multiple lipid measures (eg, lysophosphatidylcholines, hydroxysphingomyelins, low-density lipoprotein size and composition) and nonlipid metabolites (eg, hydroxyphenylpyruvate, glucuronate), associate with WMH in a general population of middle-aged and older adults. Some metabolomic measures show marked sex specificities and explain a sizable proportion of WMH variance.


Assuntos
Diabetes Mellitus Tipo 2 , Substância Branca , Idoso , Encéfalo/patologia , Diabetes Mellitus Tipo 2/patologia , Feminino , Humanos , Imageamento por Ressonância Magnética/métodos , Masculino , Metaboloma , Pessoa de Meia-Idade , Substância Branca/diagnóstico por imagem
12.
Psychol Med ; 53(12): 5698-5708, 2023 09.
Artigo em Inglês | MEDLINE | ID: mdl-36226568

RESUMO

BACKGROUND: Understanding deviations from typical brain development is a promising approach to comprehend pathophysiology in childhood and adolescence. We investigated if cerebellar volumes different than expected for age and sex could predict psychopathology, executive functions and academic achievement. METHODS: Children and adolescents aged 6-17 years from the Brazilian High-Risk Cohort Study for Mental Conditions had their cerebellar volume estimated using Multiple Automatically Generated Templates from T1-weighted images at baseline (n = 677) and at 3-year follow-up (n = 447). Outcomes were assessed using the Child Behavior Checklist and standardized measures of executive functions and school achievement. Models of typically developing cerebellum were based on a subsample not exposed to risk factors and without mental-health conditions (n = 216). Deviations from this model were constructed for the remaining individuals (n = 461) and standardized variation from age and sex trajectory model was used to predict outcomes in cross-sectional, longitudinal and mediation analyses. RESULTS: Cerebellar volumes higher than expected for age and sex were associated with lower externalizing specific factor and higher executive functions. In a longitudinal analysis, deviations from typical development at baseline predicted inhibitory control at follow-up, and cerebellar deviation changes from baseline to follow-up predicted changes in reading and writing abilities. The association between deviations in cerebellar volume and academic achievement was mediated by inhibitory control. CONCLUSIONS: Deviations in the cerebellar typical development are associated with outcomes in youth that have long-lasting consequences. This study highlights both the potential of typical developing models and the important role of the cerebellum in mental health, cognition and education.


Assuntos
Função Executiva , Transtornos Mentais , Criança , Humanos , Adolescente , Estudos de Coortes , Estudos Transversais , Cerebelo/diagnóstico por imagem
13.
Psychol Med ; 53(5): 1759-1769, 2023 04.
Artigo em Inglês | MEDLINE | ID: mdl-37310336

RESUMO

BACKGROUND: It has not yet been determined if the commonly reported cannabis-psychosis association is limited to individuals with pre-existing genetic risk for psychotic disorders. METHODS: We examined whether the relationship between polygenic risk score for schizophrenia (PRS-Sz) and psychotic-like experiences (PLEs), as measured by the Community Assessment of Psychic Experiences-42 (CAPE-42) questionnaire, is mediated or moderated by lifetime cannabis use at 16 years of age in 1740 of the individuals of the European IMAGEN cohort. Secondary analysis examined the relationships between lifetime cannabis use, PRS-Sz and the various sub-scales of the CAPE-42. Sensitivity analyses including covariates, including a PRS for cannabis use, were conducted and results were replicated using data from 1223 individuals in the Dutch Utrecht cannabis cohort. RESULTS: PRS-Sz significantly predicted cannabis use (p = 0.027) and PLE (p = 0.004) in the IMAGEN cohort. In the full model, considering PRS-Sz and covariates, cannabis use was also significantly associated with PLE in IMAGEN (p = 0.007). Results remained consistent in the Utrecht cohort and through sensitivity analyses. Nevertheless, there was no evidence of a mediation or moderation effects. CONCLUSIONS: These results suggest that cannabis use remains a risk factor for PLEs, over and above genetic vulnerability for schizophrenia. This research does not support the notion that the cannabis-psychosis link is limited to individuals who are genetically predisposed to psychosis and suggests a need for research focusing on cannabis-related processes in psychosis that cannot be explained by genetic vulnerability.


Assuntos
Cannabis , Alucinógenos , Transtornos Psicóticos , Esquizofrenia , Humanos , Adulto Jovem , Adulto , Esquizofrenia/epidemiologia , Esquizofrenia/genética , Cannabis/efeitos adversos , Transtornos Psicóticos/epidemiologia , Transtornos Psicóticos/genética , Agonistas de Receptores de Canabinoides
14.
Mol Psychiatry ; 27(11): 4432-4445, 2022 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-36195640

RESUMO

Human hippocampal volume has been separately associated with single nucleotide polymorphisms (SNPs), DNA methylation and gene expression, but their causal relationships remain largely unknown. Here, we aimed at identifying the causal relationships of SNPs, DNA methylation, and gene expression that are associated with hippocampal volume by integrating cross-omics analyses with genome editing, overexpression and causality inference. Based on structural neuroimaging data and blood-derived genome, transcriptome and methylome data, we prioritized a possibly causal association across multiple molecular phenotypes: rs1053218 mutation leads to cg26741686 hypermethylation, thus leads to overactivation of the associated ANKRD37 gene expression in blood, a gene involving hypoxia, which may result in the reduction of human hippocampal volume. The possibly causal relationships from rs1053218 to cg26741686 methylation to ANKRD37 expression obtained from peripheral blood were replicated in human hippocampal tissue. To confirm causality, we performed CRISPR-based genome and epigenome-editing of rs1053218 homologous alleles and cg26741686 methylation in mouse neural stem cell differentiation models, and overexpressed ANKRD37 in mouse hippocampus. These in-vitro and in-vivo experiments confirmed that rs1053218 mutation caused cg26741686 hypermethylation and ANKRD37 overexpression, and cg26741686 hypermethylation favored ANKRD37 overexpression, and ANKRD37 overexpression reduced hippocampal volume. The pairwise relationships of rs1053218 with hippocampal volume, rs1053218 with cg26741686 methylation, cg26741686 methylation with ANKRD37 expression, and ANKRD37 expression with hippocampal volume could be replicated in an independent healthy young (n = 443) dataset and observed in elderly people (n = 194), and were more significant in patients with late-onset Alzheimer's disease (n = 76). This study revealed a novel causal molecular association mechanism of ANKRD37 with human hippocampal volume, which may facilitate the design of prevention and treatment strategies for hippocampal impairment.


Assuntos
Metilação de DNA , Hipocampo , Idoso , Animais , Humanos , Camundongos , Alelos , Doença de Alzheimer/genética , Metilação de DNA/genética , Epigenoma , Hipocampo/metabolismo , Polimorfismo de Nucleotídeo Único/genética
15.
J Child Psychol Psychiatry ; 64(3): 408-416, 2023 03.
Artigo em Inglês | MEDLINE | ID: mdl-36162806

RESUMO

BACKGROUND: Specific pathways of intergenerational transmission of behavioral traits remain unclear. Here, we aim to investigate how parental genetics influence offspring cognition, educational attainment, and psychopathology in youth. METHODS: Participants for the discovery sample were 2,189 offspring (aged 6-14 years), 1898 mothers and 1,017 fathers who underwent genotyping, psychiatric, and cognitive assessments. We calculated polygenic scores (PGS) for cognition, educational attainment, attention-deficit hyperactivity disorder (ADHD), and schizophrenia for the trios. Phenotypes studied included educational and cognitive measures, ADHD and psychotic symptoms. We used a stepwise approach and multiple mediation models to analyze the effect of parental PGS on offspring traits via offspring PGS and parental phenotype. Significant results were replicated in a sample of 1,029 adolescents, 363 mothers, and 307 fathers. RESULTS: Maternal and paternal PGS for cognition influenced offspring general intelligence and executive function via offspring PGS (genetic pathway) and parental education (phenotypic pathway). Similar results were found for parental PGS for educational attainment and offspring reading and writing skills. These pathways fully explained associations between parental PGS and offspring phenotypes, without residual direct association. Associations with maternal, but not paternal, PGS were replicated. No associations were found between parental PGS for psychopathology and offspring specific symptoms. CONCLUSIONS: Our findings indicate that parental genetics influences offspring cognition and educational attainment by genetic and phenotypic pathways, suggesting the expression of parental phenotypes partially explain the association between parental genetic risk and offspring outcomes. Multiple mediations might represent an effective approach to disentangle distinct pathways for intergenerational transmission of behavioral traits.


Assuntos
Transtorno do Deficit de Atenção com Hiperatividade , Pais , Feminino , Humanos , Cognição , Escolaridade , Mães , Transtorno do Deficit de Atenção com Hiperatividade/genética , Fenótipo
16.
J Child Psychol Psychiatry ; 64(8): 1159-1175, 2023 08.
Artigo em Inglês | MEDLINE | ID: mdl-36990655

RESUMO

BACKGROUND: Stress exposure in childhood and adolescence has been linked to reductions in cortical structures and cognitive functioning. However, to date, most of these studies have been cross-sectional, limiting the ability to make long-term inferences, given that most cortical structures continue to develop through adolescence. METHODS: Here, we used a subset of the IMAGEN population cohort sample (N = 502; assessment ages: 14, 19, and 22 years; mean age: 21.945 years; SD = 0.610) to understand longitudinally the long-term interrelations between stress, cortical development, and cognitive functioning. To these ends, we first used a latent change score model to examine four bivariate relations - assessing individual differences in change in the relations between adolescent stress exposure and volume, surface area, and cortical thickness of cortical structures, as well as cognitive outcomes. Second, we probed for indirect neurocognitive effects linking stress to cortical brain structures and cognitive functions using rich longitudinal mediation modeling. RESULTS: Latent change score modeling showed that greater baseline adolescence stress at age 14 predicted a small reduction in the right anterior cingulate volume (Std. ß = -.327, p = .042, 95% CI [-0.643, -0.012]) and right anterior cingulate surface area (Std. ß = -.274, p = .038, 95% CI [-0.533, -0.015]) across ages 14-22. These effects were very modest in nature and became nonsignificant after correcting for multiple comparisons. Our longitudinal analyses found no evidence of indirect effects in the two neurocognitive pathways linking adolescent stress to brain and cognitive outcomes. CONCLUSION: Findings shed light on the impact of stress on brain reductions, particularly in the prefrontal cortex that have consistently been implicated in the previous cross-sectional studies. However, the magnitude of effects observed in our study is smaller than that has been reported in past cross-sectional work. This suggests that the potential impact of stress during adolescence on brain structures may likely be more modest than previously noted.


Assuntos
Estresse Psicológico , Adolescente , Humanos , Adulto Jovem , Córtex Cerebral/diagnóstico por imagem , Córtex Cerebral/fisiologia , Estudos Longitudinais , Imageamento por Ressonância Magnética , Psicologia do Adolescente
17.
Proc Natl Acad Sci U S A ; 117(22): 12411-12418, 2020 06 02.
Artigo em Inglês | MEDLINE | ID: mdl-32430323

RESUMO

Genetic factors and socioeconomic status (SES) inequalities play a large role in educational attainment, and both have been associated with variations in brain structure and cognition. However, genetics and SES are correlated, and no prior study has assessed their neural associations independently. Here we used a polygenic score for educational attainment (EduYears-PGS), as well as SES, in a longitudinal study of 551 adolescents to tease apart genetic and environmental associations with brain development and cognition. Subjects received a structural MRI scan at ages 14 and 19. At both time points, they performed three working memory (WM) tasks. SES and EduYears-PGS were correlated (r = 0.27) and had both common and independent associations with brain structure and cognition. Specifically, lower SES was related to less total cortical surface area and lower WM. EduYears-PGS was also related to total cortical surface area, but in addition had a regional association with surface area in the right parietal lobe, a region related to nonverbal cognitive functions, including mathematics, spatial cognition, and WM. SES, but not EduYears-PGS, was related to a change in total cortical surface area from age 14 to 19. This study demonstrates a regional association of EduYears-PGS and the independent prediction of SES with cognitive function and brain development. It suggests that the SES inequalities, in particular parental education, are related to global aspects of cortical development, and exert a persistent influence on brain development during adolescence.


Assuntos
Encéfalo/crescimento & desenvolvimento , Cognição , Escolaridade , Sucesso Acadêmico , Adolescente , Adulto , Encéfalo/diagnóstico por imagem , Encéfalo/fisiologia , Feminino , Humanos , Estudos Longitudinais , Imageamento por Ressonância Magnética , Masculino , Memória de Curto Prazo , Herança Multifatorial , Classe Social , Adulto Jovem
18.
Eur Child Adolesc Psychiatry ; 32(9): 1633-1642, 2023 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-35318541

RESUMO

It has been suggested that autistic traits are associated with less frequent alcohol use in adolescence. Our study seeks to examine the relationship between autistic traits and alcohol use in a large adolescent population. Leveraging data from the IMAGEN cohort, including 2045 14-year-old adolescents that were followed-up to age 18, we selected items on social preference/skills and rigidity from different questionnaires. We used linear regression models to (1) test the effect of the sum scores on the prevalence of alcohol use (AUDIT-C) over time, (2) explore the relationship between autistic traits and alcohol use patterns, and (3) explore the specific effect of each autistic trait on alcohol use. Higher scores on the selected items were associated with trajectories of less alcohol use from the ages between 14 and 18 (b = - 0.030; CI 95% = - 0.042, - 0.017; p < 0.001). Among adolescents who used alcohol, those who reported more autistic traits were also drinking less per occasion than their peers and were less likely to engage in binge drinking. We found significant associations between alcohol use and social preference (p < 0.001), nervousness for new situations (p = 0.001), and detail orientation (p < 0.001). Autistic traits (social impairment, detail orientation, and anxiety) may buffer against alcohol use in adolescence.


Assuntos
Transtorno Autístico , Humanos , Adolescente , Transtornos de Ansiedade , Inquéritos e Questionários
19.
J Neurosci ; 41(13): 2990-2999, 2021 03 31.
Artigo em Inglês | MEDLINE | ID: mdl-33589514

RESUMO

According to the organizational-activational hypothesis, the organizational effects of testosterone during (prenatal) brain development moderate the activational effects of adult testosterone on behavior. Accumulating evidence supports the notion that adolescence is another period during which sex hormones organize the nervous system. Here we investigate how pubertal sex hormones moderate the activational effects of adult sex hormones on social cognition in humans. To do so, we recruited a sample of young men (n = 507; age, ∼19 years) from a longitudinal birth cohort and investigated whether testosterone exposure during adolescence (from 9 to 17 years of age) moderates the relation between current testosterone and brain response to faces in young adulthood, as assessed with functional magnetic resonance imaging (fMRI). Our results showed that the cumulative exposure to testosterone during adolescence moderated the relation between adult testosterone and both the mean fMRI response and functional connectivity (i.e., node strength). Specifically, in participants with low exposure to testosterone during puberty, we observed a positive relationship between current testosterone and the brain response to faces; this was not the case for participants with medium and high pubertal testosterone. Furthermore, we observed a stronger relationship between the brain response and current testosterone in parts of the angry-face network associated with (vs without) motion in the eye region of an observed (angry) face. We speculate that pubertal testosterone modulates the relationship between current testosterone and brain response to social cues carried by the eyes and signaling a potential threat.SIGNIFICANCE STATEMENT Accumulating evidence supports the organizational effects of pubertal testosterone, but the body of literature examining these effects on social cognition in humans is in its infancy. With a sample of young men from a longitudinal birth cohort, we showed that the cumulative exposure to testosterone during adolescence moderated the relation between adult testosterone and both the mean BOLD signal change and functional connectivity. Specifically, we observed a positive relationship between adult testosterone and the brain response to faces in participants with low exposure to testosterone during puberty, but not in participants with medium and high pubertal testosterone. Results of further analysis suggest that sensitivity to cues carried by the eyes might underlie the relationship between testosterone and brain response to faces, especially in the context of a potential threat.


Assuntos
Encéfalo/diagnóstico por imagem , Encéfalo/metabolismo , Expressão Facial , Estimulação Luminosa/métodos , Puberdade/metabolismo , Testosterona/sangue , Adolescente , Estudos de Coortes , Humanos , Estudos Longitudinais , Masculino , Maturidade Sexual/fisiologia , Adulto Jovem
20.
Hum Brain Mapp ; 43(1): 23-36, 2022 01.
Artigo em Inglês | MEDLINE | ID: mdl-32154629

RESUMO

Neuroimaging has played an important part in advancing our understanding of the neurobiology of obsessive-compulsive disorder (OCD). At the same time, neuroimaging studies of OCD have had notable limitations, including reliance on relatively small samples. International collaborative efforts to increase statistical power by combining samples from across sites have been bolstered by the ENIGMA consortium; this provides specific technical expertise for conducting multi-site analyses, as well as access to a collaborative community of neuroimaging scientists. In this article, we outline the background to, development of, and initial findings from ENIGMA's OCD working group, which currently consists of 47 samples from 34 institutes in 15 countries on 5 continents, with a total sample of 2,323 OCD patients and 2,325 healthy controls. Initial work has focused on studies of cortical thickness and subcortical volumes, structural connectivity, and brain lateralization in children, adolescents and adults with OCD, also including the study on the commonalities and distinctions across different neurodevelopment disorders. Additional work is ongoing, employing machine learning techniques. Findings to date have contributed to the development of neurobiological models of OCD, have provided an important model of global scientific collaboration, and have had a number of clinical implications. Importantly, our work has shed new light on questions about whether structural and functional alterations found in OCD reflect neurodevelopmental changes, effects of the disease process, or medication impacts. We conclude with a summary of ongoing work by ENIGMA-OCD, and a consideration of future directions for neuroimaging research on OCD within and beyond ENIGMA.


Assuntos
Neuroimagem , Transtorno Obsessivo-Compulsivo , Córtex Cerebral/diagnóstico por imagem , Córtex Cerebral/patologia , Humanos , Aprendizado de Máquina , Estudos Multicêntricos como Assunto , Transtorno Obsessivo-Compulsivo/diagnóstico por imagem , Transtorno Obsessivo-Compulsivo/patologia
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa