Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
PLoS One ; 16(12): e0260649, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34890411

RESUMO

The 'Iron Hypothesis' suggests a fertilization of the Southern Ocean by increased dust deposition in glacial times. This promoted high primary productivity and contributed to lower atmospheric pCO2. In this study, the diatom Pseudo-nitzschia subcurvata, known to form prominent blooms in the Southern Ocean, was grown under simulated glacial and interglacial climatic conditions to understand how iron (Fe) availability (no Fe or Fe addition) in conjunction with different pCO2 levels (190 and 290 µatm) influences growth, particulate organic carbon (POC) production and photophysiology. Under both glacial and interglacial conditions, the diatom grew with similar rates. In comparison, glacial conditions (190 µatm pCO2 and Fe input) favored POC production by P. subcurvata while under interglacial conditions (290 µatm pCO2 and Fe deficiency) POC production was reduced, indicating a negative effect caused by higher pCO2 and low Fe availability. Under interglacial conditions, the diatom had, however, thicker silica shells. Overall, our results show that the combination of higher Fe availability with low pCO2, present during the glacial ocean, was beneficial for the diatom P. subcurvata, thus contributing more to primary production during glacial compared to interglacial times. Under the interglacial ocean conditions, on the other hand, the diatom could have contributed to higher carbon export due to its higher degree of silicification.


Assuntos
Dióxido de Carbono/metabolismo , Corantes/química , Diatomáceas/crescimento & desenvolvimento , Ferro/metabolismo , Atmosfera , Corantes/metabolismo , Poeira , Minerais/química , Oceanos e Mares , Fotossíntese , Água do Mar , Temperatura
2.
Curr Biol ; 31(13): 2737-2746.e3, 2021 07 12.
Artigo em Inglês | MEDLINE | ID: mdl-34081914

RESUMO

Over the last decades, it has been reported that the habitat of the Southern Ocean (SO) key species Antarctic krill (Euphausia superba) has contracted to high latitudes, putatively due to reduced winter sea ice coverage, while salps as Salpa thompsoni have extended their dispersal to the former krill habitats. To date, the potential implications of this population shift on the biogeochemical cycling of the limiting micronutrient iron (Fe) and its bioavailability to SO phytoplankton has never been tested. Based on uptake of fecal pellet (FP)-released Fe by SO phytoplankton, this study highlights how efficiently krill and salps recycle Fe. To test this, we collected FPs of natural populations of salps and krill, added them to the same SO phytoplankton community, and measured the community's Fe uptake rates. Our results reveal that both FP additions yielded similar dissolved iron concentrations in the seawater. Per FP carbon added to the seawater, 4.8 ± 1.5 times more Fe was taken up by the same phytoplankton community from salp FP than from krill FP, suggesting that salp FP increased the Fe bioavailability, possibly through the release of ligands. With respect to the ongoing shift from krill to salps, the potential for carbon fixation of the Fe-limited SO could be strengthened in the future, representing a negative feedback to climate change.


Assuntos
Euphausiacea/metabolismo , Fezes/química , Ferro/metabolismo , Oceanos e Mares , Fitoplâncton/metabolismo , Animais , Regiões Antárticas , Ciclo do Carbono , Mudança Climática , Ecossistema
3.
PLoS One ; 14(9): e0221959, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31525212

RESUMO

In some parts of the Southern Ocean (SO), even though low surface concentrations of iron (Fe) and manganese (Mn) indicate FeMn co-limitation, we still lack an understanding on how Mn and Fe availability influences SO phytoplankton ecophysiology. Therefore, this study investigated the effects of Fe and Mn limitation alone as well as their combination on growth, photophysiology and particulate organic carbon production of the bloom-forming Antarctic diatom Chaetoceros debilis. Our results clearly show that growth, photochemical efficiency and carbon production of C. debilis were co-limited by Fe and Mn as highest values were only reached when both nutrients were provided. Even though Mn-deficient cells had higher photochemical efficiencies than Fe-limited ones, they, however, displayed similar low growth and POC production rates, indicating that Mn limitation alone drastically impeded the cell's performance. These results demonstrate that similar to low Fe concentrations, low Mn availability inhibits growth and carbon production of C. debilis. As a result from different species-specific trace metal requirements, SO phytoplankton species distribution and productivity may therefore not solely depend on the input of Fe alone, but also critically on Mn acting together as important drivers of SO phytoplankton ecology and biogeochemistry.


Assuntos
Diatomáceas/crescimento & desenvolvimento , Ferro/metabolismo , Manganês/metabolismo , Biomassa , Carbono/metabolismo , Diatomáceas/metabolismo , Deficiências de Ferro , Manganês/deficiência , Água do Mar/química
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa