Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 68
Filtrar
1.
Int J Mol Sci ; 25(11)2024 Jun 06.
Artigo em Inglês | MEDLINE | ID: mdl-38892454

RESUMO

Ferulic acid (Fer) and geraniol (Ger) are natural compounds whose antioxidant and anti-inflammatory activity confer beneficial properties, such as antibacterial, anticancer, and neuroprotective effects. However, the short half-lives of these compounds impair their therapeutic activities after conventional administration. We propose, therefore, a new prodrug (Fer-Ger) obtained by a bio-catalyzed ester conjugation of Fer and Ger to enhance the loading of solid lipid microparticles (SLMs) designed as Fer-Ger delivery and targeting systems. SLMs were obtained by hot emulsion techniques without organic solvents. HPLC-UV analysis evidenced that Fer-Ger is hydrolyzed in human or rat whole blood and rat liver homogenates, with half-lives of 193.64 ± 20.93, 20.15 ± 0.75, and 3.94 ± 0.33 min, respectively, but not in rat brain homogenates. Studies on neuronal-differentiated mouse neuroblastoma N2a cells incubated with the reactive oxygen species (ROS) inductor H2O2 evidenced the Fer-Ger ability to prevent oxidative injury, despite the fact that it appears ROS-promoting. The amounts of Fer-Ger encapsulated in tristearin SLMs, obtained in the absence or presence of glucose, were 1.5 ± 0.1%, allowing the control of the prodrug release (glucose absence) or to sensibly enhance its water dissolution rate (glucose presence). These new "green" carriers can potentially prolong the beneficial effects of Fer and Ger or induce neuroprotection as nasal formulations.


Assuntos
Monoterpenos Acíclicos , Ácidos Cumáricos , Pró-Fármacos , Pró-Fármacos/química , Pró-Fármacos/farmacologia , Animais , Ácidos Cumáricos/química , Ratos , Camundongos , Humanos , Hidrólise , Monoterpenos Acíclicos/química , Monoterpenos Acíclicos/farmacologia , Linhagem Celular Tumoral , Ésteres/química , Terpenos/química , Terpenos/farmacologia , Espécies Reativas de Oxigênio/metabolismo , Antioxidantes/química , Antioxidantes/farmacologia
2.
Int J Mol Sci ; 24(2)2023 Jan 16.
Artigo em Inglês | MEDLINE | ID: mdl-36675321

RESUMO

Eugenol, cinnamaldehyde and D-limonene, the main components of natural essential oils, are endowed with antioxidant and anti-inflammatory properties which allow them to induce beneficial effects on intestinal, cardiac and neuronal levels. In order to characterize their pharmacokinetic profiles and aptitude to permeate in the central nervous system after intravenous and oral administration to rats, new analytical procedures, easily achievable with HPLC-UV techniques, were developed. The terminal half-lives of these compounds range from 12.4 ± 0.9 (D-limonene) and 23.1 ± 1.6 min (cinnamaldehyde); their oral bioavailability appears relatively poor, ranging from 4.25 ± 0.11% (eugenol) to 7.33 ± 0.37% (cinnamaldehyde). Eugenol evidences a marked aptitude to permeate in the cerebrospinal fluid (CSF) of rats following both intravenous and oral administrations, whereas cinnamaldehyde appears able to reach the CSF only after intravenous administration; limonene is totally unable to permeate in the CSF. Eugenol was therefore recruited for in vitro studies of viability and time-/dose-dependent dopamine release in neuronal differentiated PC12 cells (a recognized cellular model mimicking dopaminergic neurons), evidencing its ability to increase cell viability and to induce dopamine release according to a U-shaped time-course curve. Moreover, concentration-response data suggest that eugenol may induce beneficial effects against Parkinson's disease after oral administration.


Assuntos
Dopamina , Eugenol , Ratos , Animais , Eugenol/farmacologia , Limoneno , Células PC12 , Acroleína/farmacologia , Encéfalo
3.
Chemphyschem ; 21(8): 770-778, 2020 04 20.
Artigo em Inglês | MEDLINE | ID: mdl-32107826

RESUMO

Pathologies associated with calcified tissue, such as osteoporosis, demand in vivo and/or in situ spectroscopic analysis to assess the role of chemical substitutions in the inorganic component. High energy X-ray or NMR spectroscopies are impractical or damaging in biomedical conditions. Low energy spectroscopies, such as IR and Raman techniques, are often the best alternative. In apatite biominerals, the vibrational signatures of the phosphate group are generally used as fingerprint of the materials although they provide only limited information. Here, we have used first principles calculations to unravel the complexity of the complete vibrational spectra of apatites. We determined the spectroscopic features of all the phonon modes of fluoroapatite, hydroxy-apatite, and carbonated fluoroapatite beyond the analysis of the phosphate groups, focusing on the effect of local corrections induced by the crystalline environment and the specific mineral composition. This provides a clear and unique reference to discriminate structural and chemical variations in biominerals, opening the way to a widespread application of non-invasive spectroscopies for in vivo diagnostics, and biomedical analysis.


Assuntos
Apatitas/química , Materiais Biocompatíveis/química , Modelos Moleculares , Análise Espectral Raman
4.
Mol Pharm ; 15(1): 268-278, 2018 01 02.
Artigo em Inglês | MEDLINE | ID: mdl-29164899

RESUMO

A combined experimental and computational study on the solubility and biological activity of carbamazepine (CBZ), three co-crystals (COCs), and their parent physical mixtures (MIXs) is carried out to shed light onto the possible modulation of the drug properties. Two of the considered co-crystals, CBZ with vanillic acid (VAN) and CBZ with 4-nitropyridine N-oxide (NPO), are newly synthesized, while the third, CBZ with succinic acid (SUC), is already known. While COC CBZ-VAN and MIX CBZ-NPO did not alter the CBZ dissolution profile, MIX CBZ-SUC and COCs CBZ-SUC and CBZ-NPO inhibit straightaway its solubility. On the other hand, MIX CBZ-VAN induced a remarkable increase of the drug solubility. Analogously, different CBZ permeability values were registered following its dissolution from MIXs and COCs: CBZ and MIXs CBZ-SUC and CBZ-VAN slightly reduce the integrity of intestinal cell monolayers, whereas MIX CBZ-NPO and COCs CBZ-SUC, CBZ-VAN, and CBZ-NPO maintain the monolayer integrity. The molecular aggregates formed in solution were found to be the key to interpret these different behaviors, opening new possibilities in the pharmaceutical utilization and definition of drug co-crystals.


Assuntos
Carbamazepina/química , Cristalização , Simulação de Dinâmica Molecular , Solubilidade , Ácido Vanílico/química
5.
Mol Pharm ; 12(5): 1501-11, 2015 May 04.
Artigo em Inglês | MEDLINE | ID: mdl-25794305

RESUMO

Co-crystals are crystalline complexes of two or more molecules bound together in crystal lattices through noncovalent interactions. The solubility and dissolution properties of co-crystals can allow to increase the bioavailability of poorly water-soluble active pharmaceutical ingredients (APIs). It is currently believed that the co-crystallization strategy should not induce changes on the pharmacological profile of the APIs, even if it is not yet clear whether a co-crystal would be defined as a physical mixture or as a new chemical entity. In order to clarify these aspects, we chose indomethacin as guest poorly aqueous soluble molecule and compared its properties with those of its co-crystals obtained with 2-hydroxy-4-methylpyridine (co-crystal 1), 2-methoxy-5-nitroaniline (co-crystal 2), and saccharine (co-crystal 3). In particular, we performed a systematic comparison among indomethacin, its co-crystals, and their parent physical mixtures by evaluating via HPLC analysis the API dissolution profile, its ability to permeate across intestinal cell monolayers (NCM460), and its oral bioavailability in rat. The indomethacin dissolution profile was not altered by the presence of co-crystallizing agents as physical mixtures, whereas significant changes were observed by the dissolution of the co-crystals. Furthermore, there was a qualitative concordance between the API dissolution patterns and the relative oral bioavailabilities in rats. Co-crystal 1 induced a drastic decrease of the transepithelial electrical resistance (TEER) value of NCM460 cell monolayers, whereas its parent mixture did not evidence any effect. The saccharin-indomethacin mixture induced a drastic decrease of the TEER value of monolayers, whereas its parent co-crystal 3 did not induce any effects on their integrity, being anyway able to increase the permeation of indomethacin. Taken together, these results demonstrate for the first time different effects induced by co-crystals and their parent physical mixtures on a biologic system, findings that could raise serious concerns about the use of co-crystal strategy to improve API bioavailability without performing appropriate investigations.


Assuntos
Indometacina/química , Animais , Varredura Diferencial de Calorimetria , Linhagem Celular , Cromatografia Líquida de Alta Pressão , Cristalização , Humanos , Indometacina/farmacocinética , Masculino , Ratos , Ratos Sprague-Dawley , Sacarina , Solubilidade
6.
Exp Eye Res ; 120: 50-4, 2014 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-24345371

RESUMO

Human retinal pigment epithelium cells were used to investigate the mechanisms underlying blood-retinal barrier disruption under conditions of chronic hyperglycemia. The treatment with 25 mM glucose caused a rapid drop in the transepithelial electrical resistance (TEER), which was reversed by the addition of either a methanolic extract from Goji (Lycium barbarum L.) berries or its main component, taurine. Intracellular cAMP levels increased concurrently with the high glucose-induced TEER decrease, and were correlated to an increased activity of the cytosolic isoform of the enzyme adenylyl cyclase. The treatment with plant extract or taurine restored control levels. Data are discussed in view of a possible prevention approach for diabetic retinopathy.


Assuntos
AMP Cíclico/metabolismo , Glucose/toxicidade , Lycium/química , Extratos Vegetais/farmacologia , Epitélio Pigmentado da Retina/efeitos dos fármacos , Junções Íntimas/efeitos dos fármacos , Adenilil Ciclases/metabolismo , Linhagem Celular , Impedância Elétrica , Frutas , Humanos , Epitélio Pigmentado da Retina/metabolismo , Taurina/farmacologia
7.
Mol Pharm ; 11(5): 1550-61, 2014 May 05.
Artigo em Inglês | MEDLINE | ID: mdl-24717116

RESUMO

Our previous results demonstrated that a prodrug obtained by the conjugation of the antiretroviral drug zidovudine (AZT) with ursodeoxycholic acid (UDCA) represents a potential carrier for AZT in the central nervous system, thus possibly increasing AZT efficiency as an anti-HIV drug. Based on these results and in order to enhance AZT brain targeting, the present study focuses on solid lipid microparticles (SLMs) as a carrier system for the nasal administration of UDCA-AZT prodrug. SLMs were produced by the hot emulsion technique, using tristearin and stearic acid as lipidic carriers, whose mean diameters were 16 and 7 µm, respectively. SLMs were of spherical shape, and their prodrug loading was 0.57 ± 0.03% (w/w, tristearin based) and 1.84 ± 0.02% (w/w, stearic acid based). The tristearin SLMs were able to control the prodrug release, whereas the stearic acid SLMs induced a significant increase of the dissolution rate of the free prodrug. The free prodrug was rapidly hydrolyzed in rat liver homogenates with a half-life of 2.7 ± 0.14 min (process completed within 30 min). The tristearin SLMs markedly enhanced the stability of the prodrug (75% of the prodrug still present after 30 min), whereas the stabilization effect of the stearic acid SLMs was lower (14% of the prodrug still present after 30 min). No AZT and UDCA-AZT were detected in the rat cerebrospinal fluid (CSF) after an intravenous prodrug administration (200 µg). Conversely, the nasal administration of stearic acid based SLMs induced the uptake of the prodrug in the CSF, demonstrating the existence of a direct nose-CNS pathway. In the presence of chitosan, the CSF prodrug uptake increased six times, up to 1.5 µg/mL within 150 min after nasal administration. The loaded SLMs appear therefore as a promising nasal formulation for selective zidovudine brain uptake.


Assuntos
Encéfalo/metabolismo , Lipídeos/química , Pró-Fármacos/administração & dosagem , Pró-Fármacos/metabolismo , Zidovudina/administração & dosagem , Zidovudina/metabolismo , Administração Intranasal , Animais , Cinética , Masculino , Pró-Fármacos/química , Pró-Fármacos/farmacocinética , Ratos , Ratos Wistar , Ácido Ursodesoxicólico/química , Zidovudina/química , Zidovudina/farmacocinética
8.
Neural Regen Res ; 18(2): 389-395, 2023 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-35900435

RESUMO

In the current landscape of endothelial cell isolation for building in vitro models of the blood-brain barrier, our work moves towards reproducing the features of the neurovascular unit to achieve glial compliance through an innovative biomimetic coating technology for brain chronic implants. We hypothesized that the autologous origin of human brain microvascular endothelial cells (hBMECs) is the first requirement for the suitable coating to prevent the glial inflammatory response triggered by foreign neuroprosthetics. Therefore, this study established a new procedure to preserve the in vitro viability of hBMECs isolated from gray and white matter specimens taken from neurosurgery patients. Culturing adult hBMECs is generally considered a challenging task due to the difficult survival ex vivo and progressive reduction in proliferation of these cells. The addition of 10 nM ß-estradiol 17-acetate to the hBMEC culture medium was found to be an essential and discriminating factor promoting adhesion and proliferation both after isolation and thawing, supporting the well-known protective role played by estrogens on microvessels. In particular, ß-estradiol 17-acetate was critical for both freshly isolated and thawed female-derived hBMECs, while it was not necessary for freshly isolated male-derived hBMECs; however, it did counteract the decay in the viability of the latter after thawing. The tumor-free hBMECs were thus cultured for up to 2 months and their growth efficiency was assessed before and after two periods of cryopreservation. Despite the thermal stress, the hBMECs remained viable and suitable for re-freezing and storage for several months. This approach increasing in vitro viability of hBMECs opens new perspectives for the use of cryopreserved autologous hBMECs as biomimetic therapeutic tools, offering the potential to avoid additional surgical sampling for each patient.

9.
Pharmaceutics ; 15(6)2023 May 23.
Artigo em Inglês | MEDLINE | ID: mdl-37376027

RESUMO

Phytochemicals, produced as secondary plant metabolites, have shown interesting potential therapeutic activities against neurodegenerative diseases and cancer. Unfortunately, poor bioavailability and rapid metabolic processes compromise their therapeutic use, and several strategies are currently proposed for overcoming these issues. The present review summarises strategies for enhancing the central nervous system's phytochemical efficacy. Particular attention has been paid to the use of phytochemicals in combination with other drugs (co-administrations) or administration of phytochemicals as prodrugs or conjugates, particularly when these approaches are supported by nanotechnologies exploiting conjugation strategies with appropriate targeting molecules. These aspects are described for polyphenols and essential oil components, which can improve their loading as prodrugs in nanocarriers, or be part of nanocarriers designed for targeted co-delivery to achieve synergistic anti-glioma or anti-neurodegenerative effects. The use of in vitro models, able to simulate the blood-brain barrier, neurodegeneration or glioma, and useful for optimizing innovative formulations before their in vivo administration via intravenous, oral, or nasal routes, is also summarised. Among the described compounds, quercetin, curcumin, resveratrol, ferulic acid, geraniol, and cinnamaldehyde can be efficaciously formulated to attain brain-targeting characteristics, and may therefore be therapeutically useful against glioma or neurodegenerative diseases.

10.
Expert Opin Drug Deliv ; 20(11): 1657-1679, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-38014509

RESUMO

OBJECTIVE: Ferulic acid (Fer) displays antioxidant/anti-inflammatory properties useful against neurodegenerative diseases. To increase Fer uptake and its central nervous system residence time, a dimeric prodrug, optimizing the Fer loading on nasally administrable solid lipid microparticles (SLMs), was developed. METHODS: The prodrug was synthesized as Fer dimeric conjugate methylated on the carboxylic moiety. Prodrug antioxidant/anti-inflammatory properties and ability to release Fer in physiologic environments were evaluated. Tristearin or stearic acid SLMs were obtained by hot emulsion technique. In vivo pharmacokinetics were quantified by HPLC. RESULTS: The prodrug was able to release Fer in physiologic environments (whole blood and brain homogenates) and induce in vitro antioxidant/anti-inflammatory effects. Its half-life in rats was 18.0 ± 1.9 min. Stearic acid SLMs, exhibiting the highest prodrug loading and dissolution rate, were selected for nasal administration to rats (1 mg/kg dose), allowing to obtain high prodrug bioavailability and prolonged residence in the cerebrospinal fluid, showing AUC (Area Under Concentration) values (108.5 ± 3.9 µg∙mL-1∙min) up to 30 times over those of Fer free drug, after its intravenous/nasal administration (3.3 ± 0.3/5.16 ± 0.20 µg∙mL-1∙min, respectively) at the same dose. Chitosan presence further improved the prodrug brain uptake. CONCLUSIONS: Nasal administration of prodrug-loaded SLMs can be proposed as a noninvasive approach for neurodegenerative disease therapy.


Assuntos
Doenças Neurodegenerativas , Pró-Fármacos , Ratos , Animais , Administração Intranasal , Portadores de Fármacos , Antioxidantes/farmacologia , Encéfalo , Anti-Inflamatórios , Tamanho da Partícula
11.
Mol Pharm ; 9(4): 957-68, 2012 Apr 02.
Artigo em Inglês | MEDLINE | ID: mdl-22356133

RESUMO

We have synthesized a new prodrug obtained by the 5'-ester conjugation of zidovudine (AZT), an antiviral agent substrate of active efflux transport systems (AET), with ursodeoxycholic acid (UDCA), a bile acid able to permeate into the central nervous system (CNS). We have demonstrated, by HPLC analysis, that UDCA-AZT is quickly hydrolyzed in rat plasma and whole blood (half-life <10 s). The same compound was hydrolyzed with slower rates in human plasma (half-life =7.53 ± 0.44 h) and whole blood (half-life =3.71 ± 0.16 h), allowing to control the AZT release. UDCA-AZT appeared hydrolyzed also in rat brain (half-life = 7.24 ± 0.45 min) and liver homogenates (half-life = 2.70 ± 0.14 min). In the aim to study the permeation properties of the UDCA-AZT across physiological barriers, we have used an established human retinal pigment epithelium (HRPE) cell line to obtain a polarized cell monolayer showing epithelial features. The bidirectional permeation of 30 µM AZT across this monolayer was regulated by apparent permeability coefficients (P(E)) higher from the apical to basolateral compartments (P(E) = 209 ± 4 × 10⁻5 cm/min) than in the opposite way (P(E) = 133 ± 8 × 10⁻5 cm/min), in conformity with the in vivo behavior of AZT, actively effluxed from the CNS. The influx (P(E) = 39.1 ± 1.2 × 10⁻5 cm/min) and efflux (P(E) = 31.3 ± 3.6 × 10⁻5 cm/min) permeability coefficients of 30 µM UDCA-AZT were instead the same, suggesting the ability of the prodrug to avoid the AET systems and, potentially, to allow its accumulation in the CNS. The relatively low P(E) values of UDCA-AZT were associated with a partial hydrolysis during its permeation across the cell monolayer.


Assuntos
Sistema Nervoso Central/metabolismo , Pró-Fármacos/química , Ácido Ursodesoxicólico/química , Zidovudina/química , Animais , Humanos , Cinética , Estrutura Molecular , Ratos
12.
Mol Pharm ; 9(3): 591-604, 2012 Mar 05.
Artigo em Inglês | MEDLINE | ID: mdl-22292533

RESUMO

We propose a potential antiparkinsonian prodrug DP-L-A(2A)ANT (2) obtained by amidic conjugation of dopamine (1) via a succinic spacer to a new triazolo-triazine A(2A) adenosine receptor (AR) antagonist A(2A)ANT (3). The affinity of 2 and its hydrolysis products-1, 3, dopamine-linker DP-L (4) and A(2A)ANT-linker L-A(2A)ANT (5)-was evaluated for hA(1), hA(2A), hA(2B) and hA(3) ARs and rat striatum A(2A)ARs or D(2) receptors. The hydrolysis patterns of 2, 4 and 5 and the stabilities of 1 and 3 were evaluated by HPLC analysis in human whole blood and rat brain homogenates. High hA(2A) affinity was shown by compounds 2 (K(i) = 7.32 ± 0.65 nM), 3 (K(i) = 35 ± 3 nM) and 5 (K(i) = 72 ± 5 nM), whose affinity values were similar in rat striatum. These compounds were not able to change dopamine affinity for D(2) receptors but counteracted the CGS 21680-induced reduction of dopamine affinity. DP-L (4) was inactive on adenosine and dopaminergic receptors. As for stability studies, compounds 4 and 5 were not degraded in incubation media. In human blood, the prodrug 2 was hydrolyzed (half-life = 2.73 ± 0.23 h) mainly on the amidic bound coupling the A(2A)ANT (3), whereas in rat brain homogenates the prodrug 2 was hydrolyzed (half-life > eight hours) exclusively on the amidic bound coupling dopamine, allowing its controlled release and increasing its poor stability as characterized by half-life = 22.5 ± 1.5 min.


Assuntos
Antagonistas do Receptor A2 de Adenosina/química , Dopamina/química , Animais , Células CHO , Cromatografia Líquida de Alta Pressão , Corpo Estriado/efeitos dos fármacos , Corpo Estriado/metabolismo , Cricetinae , AMP Cíclico/metabolismo , Humanos , Cinética , Transtornos Parkinsonianos/tratamento farmacológico , Pró-Fármacos/síntese química , Pró-Fármacos/química , Pró-Fármacos/farmacologia , Ratos
13.
Solid State Nucl Magn Reson ; 45-46: 59-65, 2012.
Artigo em Inglês | MEDLINE | ID: mdl-22770669

RESUMO

NMR is the technique of election to probe the local properties of materials. Herein we present the results of density functional theory (DFT) ab initio calculations of the NMR parameters for fluorapatite (FAp), a calcium orthophosphate mineral belonging to the apatite family, by using the GIPAW method (Pickard and Mauri, 2001). Understanding the local effects of pressure on apatites is particularly relevant because of their important role in many solid state and biomedical applications. Apatites are open structures, which can undergo complex anisotropic deformations, and the response of NMR can elucidate the microscopic changes induced by an applied pressure. The computed NMR parameters proved to be in good agreement with the available experimental data. The structural evaluation of the material behavior under hydrostatic pressure (from -5 to +100 kbar) indicated a shrinkage of the diameter of the apatitic channel, and a strong correlation between NMR shielding and pressure, proving the sensitivity of this technique to even small changes in the chemical environment around the nuclei. This theoretical approach allows the exploration of all the different nuclei composing the material, thus providing a very useful guidance in the interpretation of experimental results, particularly valuable for the more challenging nuclei such as (43)Ca and (17)O.

14.
iScience ; 25(12): 105477, 2022 Dec 22.
Artigo em Inglês | MEDLINE | ID: mdl-36387022

RESUMO

New evidence is emerging about the dynamics of interaction between circadian rhythms and brain waves, whose coordination occurs through the entrainment process. The so-called "oscillopathies" or dysfunctions in synchronization of neuronal oscillation in key brain networks lead to the onset of neurodegenerative diseases. A typical example of alteration is insomnia, a risk factor for the oscillopathies, increasingly widespread worldwide. Recently, synchronization of circadian rhythms in cell cultures has allowed an improvement in the physiological relevance of responses to stimuli. Furthermore, brain organoids and neurons cultured in microfluidic systems are the latest frontiers for in vitro reproduction of rhythmic electrical signals. In this review, the combination of these in vitro experimental approaches is proposed as suitable for a more direct investigation on the common mechanisms and neurophysiological substrates underlying brain waves and circadian oscillations, and useful to evaluate the effects of "oscillotherapeutic" drugs for personalized neuromedicine.

15.
Artigo em Inglês | MEDLINE | ID: mdl-36078325

RESUMO

Ferulic acid (Fer) is known for its antioxidant and anti-inflammatory activities, which are possibly useful against neurodegenerative diseases. Despite the ability of Fer to permeate the brain, its fast elimination from the body does not allow its therapeutic use to be optimized. The present study proposes the preparation and characterization of tristearin- or stearic acid-based solid lipid microparticles (SLMs) as sustained delivery and targeting systems for Fer. The microparticles were produced by conventional hot emulsion techniques. The synthesis of the methyl ester of Fer (Fer-Me) allowed its encapsulation in the SLMs to increase. Fer-Me was hydrolyzed to Fer in rat whole blood and liver homogenate, evidencing its prodrug behavior. Furthermore, Fer-Me displayed antioxidant and anti-inflammatory properties. The amount of encapsulated Fer-Me was 0.719 ± 0.005% or 1.507 ± 0.014% in tristearin or stearic acid SLMs, respectively. The tristearin SLMs were able to control the prodrug release, while the stearic acid SLMs induced a significant increase of its dissolution rate in water. Jointly, the present results suggest that the tristearin SLMs loaded with Fer-Me could be a potential formulation against peripheral neuropathic pain; conversely, the stearic acid SLMs could be useful for Fer-Me uptake in the brain after nasal administration of the formulation.


Assuntos
Pró-Fármacos , Acetilmuramil-Alanil-Isoglutamina , Animais , Antioxidantes , Ácidos Cafeicos , Ácidos Cumáricos , Portadores de Fármacos/química , Doenças Neuroinflamatórias , Tamanho da Partícula , Pró-Fármacos/química , Ratos
16.
Pharmaceutics ; 13(8)2021 Jul 27.
Artigo em Inglês | MEDLINE | ID: mdl-34452105

RESUMO

About 40 years ago the lipidization of hydrophilic drugs was proposed to induce their brain targeting by transforming them into lipophilic prodrugs. Unfortunately, lipidization often transforms a hydrophilic neuroactive agent into an active efflux transporter (AET) substrate, with consequent rejection from the brain after permeation across the blood brain barrier (BBB). Currently, the prodrug approach has greatly evolved in comparison to lipidization. This review describes the evolution of the prodrug approach for brain targeting considering the design of prodrugs as active influx substrates or molecules able to inhibit or elude AETs. Moreover, the prodrug approach appears strategic in optimization of the encapsulation of neuroactive drugs in nanoparticulate systems that can be designed to induce their receptor-mediated transport (RMT) across the BBB by appropriate decorations on their surface. Nasal administration is described as a valuable alternative to obtain the brain targeting of drugs, evidencing that the prodrug approach can allow the optimization of micro or nanoparticulate nasal formulations of neuroactive agents in order to obtain this goal. Furthermore, nasal administration is also proposed for prodrugs characterized by peripheral instability but potentially able to induce their targeting inside cells of the brain.

17.
Nanomaterials (Basel) ; 11(8)2021 Aug 08.
Artigo em Inglês | MEDLINE | ID: mdl-34443853

RESUMO

Poly(3,4-ethylenedioxythiophene)-Nafion (PEDOT:Nafion) is emerging as a promising alternative to PEDOT-polystyrene sulfonate (PEDOT:PSS) in organic bioelectronics. However, the biocompatibility of PEDOT:Nafion has not been investigated to date, limiting its deployment toward in vivo applications such as neural recording and stimulation. In the present study, the in vitro cytotoxicity of PEDOT:Nafion coatings, obtained by a water-based PEDOT:Nafion formulation, was evaluated using a primary cell culture of rat fibroblasts. The surface of PEDOT:Nafion coating was characterized by Atomic Force Microscopy (AFM) and water contact angle measurements. Fibroblasts adhesion and morphology was investigated by scanning electron microscopy (SEM) and AFM measurements. Cell proliferation was assessed by fluorescence microscopy, while cell viability was quantified by 3-(4,5-Dimethylthiazol-2-yl)-2,5-Diphenyltetrazolium Bromide (MTT), lactate dehydrogenase (LDH) and neutral red assays. The results showed that PEDOT:Nafion coatings obtained by the water dispersion were not cytotoxic, making the latter a reliable alternative to PEDOT:PSS dispersion, especially in terms of chronic in vivo applications.

18.
Pharmaceutics ; 13(8)2021 Jul 30.
Artigo em Inglês | MEDLINE | ID: mdl-34452141

RESUMO

Cyclodextrins (CDs) are oligosaccharides widely used in the pharmaceutical field. In this review, a detailed examination of the literature of the last two decades has been made to understand the role of CDs in nasal drug delivery systems. In nasal formulations, CDs are used as pharmaceutical excipients, as solubilizers and absorption promoters, and as active ingredients due to their several biological activities (antiviral, antiparasitic, anti-atherosclerotic, and neuroprotective). The use of CDs in nasal formulations allowed obtaining versatile drug delivery systems intended for local and systemic effects, as well as for nose-to-brain transport of drugs. In vitro and in vivo models currently employed are suitable to analyze the effects of CDs in nasal formulations. Therefore, CDs are versatile pharmaceutical materials, and due to the continual synthesis of new CDs derivatives, the research on the new nasal applications is an interesting field evolving in the coming years, to which Italian research will still contribute.

19.
J Am Chem Soc ; 132(36): 12556-8, 2010 Sep 15.
Artigo em Inglês | MEDLINE | ID: mdl-20731378

RESUMO

Herein, we report the electrochemical Li intake capacity of carbonaceous one-dimensional graphene nanoribbons (GNRs) obtained by unzipping pristine multiwalled carbon nanotubes (MWCNTs). We have found that nanotubes with diameters of approximately 50 nm present a smaller reversible capacity than conventional mesocarbon microbead (MCMB) powder. Reduced GNRs improve the capacity only marginally over the MCMB reference but present a lower Coulombic efficiency as well as a higher capacity loss per cycle. Oxidized GNRs (ox-GNRs) outperform all of the other materials studied here in terms of energy density. They present a first charge capacity of approximately 1400 mA h g(-1) with a low Coulombic efficiency for the first cycle (approximately 53%). The reversible capacity of ox-GNRs is in the range of 800 mA h g(-1), with a capacity loss per cycle of approximately 3% for early cycles and a decreasing loss rate for subsequent cycles.


Assuntos
Grafite/química , Lítio/química , Nanotubos de Carbono/química , Eletroquímica , Tamanho da Partícula
20.
Drug Discov Today ; 25(9): 1651-1667, 2020 09.
Artigo em Inglês | MEDLINE | ID: mdl-32763499

RESUMO

'Multidrug resistance' (MDR) is a difficult challenge for cancer treatment. The combined role of cytochrome P450 enzymes (CYPs) and active efflux transporters (AETs) in cancer cells appears relevant in inducing MDR. Chemotherapeutic drugs can be substrates of both CYPs and AETs and CYP inducers or inhibitors can produce the same effects on AETs. In addition, a small subpopulation of cancer stem-like cells (CSCs) appears to survive conventional chemotherapy, leading to recurrent disease. Natural products appear efficacious against CSCs; their combinational treatments with standard chemotherapy are promising for cancer eradication, in particular when supported by nanotechnologies.


Assuntos
Antineoplásicos/uso terapêutico , Inibidores das Enzimas do Citocromo P-450/uso terapêutico , Resistência a Múltiplos Medicamentos/efeitos dos fármacos , Células-Tronco Neoplásicas/efeitos dos fármacos , Animais , Sistema Enzimático do Citocromo P-450/metabolismo , Humanos , Nanomedicina , Compostos Fitoquímicos/uso terapêutico
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa