Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
Drug Resist Updat ; 64: 100863, 2022 09.
Artigo em Inglês | MEDLINE | ID: mdl-36063655

RESUMO

The Epidermal Growth Factor Receptor (EGFR) has been targeted through the development of selective tyrosine kinase inhibitors (TKIs) and monoclonal antibodies (mAb). These molecules have shown effectiveness in a subset of patients with specific genetic alterations (i.e. gain-of-function EGFR mutations or EGFR gene amplification) and have been approved for their use in non-small-cell lung cancer (NSCLC), colorectal cancer (CRC), pancreatic cancer and head and neck cancer. In addition, extensive research is being performed in many other tumour types hoping for a future approval. However, the majority of the patients show no benefit from these molecules due to primary mechanisms of resistance, already present before treatment or show disease progression upon the acquisition of drug resistance mechanisms during the treatment. At present, the majority of patients display resistance due to alterations in genes related to the EGFR signalling pathway that eventually circumvent EGFR inhibition and allow cancer progression. Thus, in this review article we focus on the molecular mechanisms underlying drug resistance via genetic alterations leading to resistance to all anti-EGFR drugs approved by the FDA and/or EMA. We also discuss novel approaches to surmount these chemoresistance modalities.


Assuntos
Antineoplásicos , Carcinoma Pulmonar de Células não Pequenas , Neoplasias Pulmonares , Anticorpos Monoclonais/farmacologia , Anticorpos Monoclonais/uso terapêutico , Antineoplásicos/farmacologia , Antineoplásicos/uso terapêutico , Carcinoma Pulmonar de Células não Pequenas/tratamento farmacológico , Resistencia a Medicamentos Antineoplásicos/genética , Receptores ErbB/genética , Humanos , Neoplasias Pulmonares/tratamento farmacológico , Mutação , Inibidores de Proteínas Quinases/farmacologia , Inibidores de Proteínas Quinases/uso terapêutico
2.
Methods Mol Biol ; 2769: 87-98, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38315391

RESUMO

The ectopic xenograft mouse model of cancer is a commonly employed tool for in vivo investigations, particularly for studying cell tumorigenicity and testing the efficacy and tolerability of systemic or local anti-cancer therapies. The model displays advantageous features with an easy-access to visualize and monitor tumor growth in real-time with a caliper. Although the tumor development occurs in an ectopic location, the histology of the tumor resembles that of human cancer upon pathological examination. This suggests that when human malignant cells are transplanted into immunocompromised mice, they can educate and attract murine cells from the surrounding environment to recapitulate a tumor structure. The experimental protocol for ectopic xenograft models is straightforward, making them reproducible, cost-effective, and conductive to shorter experimental durations. Here, we detail the utilization of ectopic xenograft models in studying biliary tract cancers (BTC), which involves subcutaneously grafting human BTC cell lines originating from different biliary tree locations onto immunocompromised nude mice.


Assuntos
Neoplasias do Sistema Biliar , Humanos , Animais , Camundongos , Camundongos Nus , Xenoenxertos , Ensaios Antitumorais Modelo de Xenoenxerto , Linhagem Celular Tumoral , Neoplasias do Sistema Biliar/metabolismo , Neoplasias do Sistema Biliar/patologia , Modelos Teóricos
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa