Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
1.
World Neurosurg ; 169: 57-72, 2023 01.
Artigo em Inglês | MEDLINE | ID: mdl-36309334

RESUMO

OBJECTIVE: Spine surgery addresses a wide range of spinal pathologies. Potential applications of 3-dimensional (3D) printed in spine surgery are broad, encompassing education, planning, and simulation. The objective of this study was to explore how 3D-printed spine models are implemented in spine surgery and their clinical applications. METHODS: Methods were combined to create a scoping review with meta-analyses. PubMed, EMBASE, the Cochrane Library, and Scopus databases were searched from 2011 to 7 September 2021. Results were screened independently by 2 reviewers. Studies utilizing 3D-printed spine models in spine surgery were included. Articles describing drill guides, implants, or nonoriginal research were excluded. Data were extracted according to reporting guidelines in relation to study information, use of model, 3D printer and printing material, design features of the model, and clinical use/patient-related outcomes. Meta-analyses were performed using random-effects models. RESULTS: Forty articles were included in the review, 3 of which were included in the meta-analysis. Primary use of the spine models included preoperative planning, education, and simulation. Six printing technologies were utilized. A range of substrates were used to recreate the spine and regional pathology. Models used for preoperative and intraoperative planning showed reductions in key surgical performance indicators. Generally, feedback for the tactility, utility, and education use of models was favorable. CONCLUSIONS: Replicating realistic spine models for operative planning, education, and training is invaluable in a subspeciality where mistakes can have devastating repercussions. Future study should evaluate the cost-effectiveness and the impact spine models have of spine surgery outcomes.


Assuntos
Procedimentos de Cirurgia Plástica , Impressão Tridimensional , Humanos , Próteses e Implantes , Coluna Vertebral/cirurgia , Tecnologia , Modelos Anatômicos
2.
J Neuroimaging ; 33(5): 792-801, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37288952

RESUMO

BACKGROUND AND PURPOSE: In deep brain stimulation (DBS), accurate electrode placement is essential for optimizing patient outcomes. Localizing electrodes enables insight into therapeutic outcomes and development of metrics for use in clinical trials. Methods of defining anatomical targets have been described with varying accuracy and objectivity. To assess variability in anatomical targeting, we compare four methods of defining an appropriate target for DBS of the subthalamic nucleus for Parkinson's disease. METHODS: The methods compared are direct visualization, red nucleus-based indirect targeting, mid-commissural point-based indirect targeting, and automated template-based targeting. This study assessed 226 hemispheres in 113 DBS recipients (39 females, 73 males, 62.2 ± 7.7 years). We utilized the electrode placement error (the Euclidean distance between the defined target and closest DBS electrode) as a metric for comparative analysis. Pairwise differences in electrode placement error across the four methods were compared using the Kruskal-Wallis H-test and Wilcoxon signed-rank tests. RESULTS: Interquartile ranges of the differences in electrode placement error spanned 1.18-1.56 mm. A Kruskal-Wallis H-test reported a statistically significant difference in the median of at least two groups (H(5) = 41.052, p < .001). Wilcoxon signed-rank tests reported statistically significant difference in two comparisons: direct visualization versus red nucleus-based indirect, and direct visualization versus automated template-based methods (T < 9215, p < .001). CONCLUSIONS: All methods were similarly discordant in their relative accuracy, despite having significant technical differences in their application. The differing protocols and technical aspects of each method, however, have the implication that one may be more practical depending on the clinical or research application at hand.


Assuntos
Estimulação Encefálica Profunda , Doença de Parkinson , Núcleo Subtalâmico , Masculino , Feminino , Humanos , Núcleo Subtalâmico/fisiologia , Estimulação Encefálica Profunda/métodos , Eletrodos , Doença de Parkinson/terapia , Procedimentos Neurocirúrgicos/métodos , Imageamento por Ressonância Magnética
3.
Artigo em Inglês | MEDLINE | ID: mdl-38083396

RESUMO

Deep Brain Stimulation (DBS) is an established therapy for many movement disorders. DBS entails electrical stimulation of precise brain structures using permanently implanted electrodes. Following implantation, locating the electrodes relative to the target brain structure assists patient outcome optimization. Here we evaluated an open-source automatic algorithm (PaCER) to localize individual electrodes on Computed Tomography imaging (co-registered to Magnetic Resonance Imaging). In a dataset of 111 participants, we found a modified version of the algorithm matched manual-markups with median error less than 0.191 mm (interquartile range 0.698 mm). Given the error is less than the voxel resolution (1 mm3) of the images, we conclude that the automatic algorithm is suitable for DBS electrode localizations.Clinical Relevance- Automated DBS electrode localization identifies the closest electrode to the target brain structure; allowing the neurologist to direct electrical stimulation to maximize patient outcomes. Further, if none of the electrodes are deemed suitable, localization will guide re-implantation.


Assuntos
Estimulação Encefálica Profunda , Doença de Parkinson , Núcleo Subtalâmico , Humanos , Núcleo Subtalâmico/diagnóstico por imagem , Núcleo Subtalâmico/cirurgia , Núcleo Subtalâmico/fisiologia , Doença de Parkinson/terapia , Eletrodos Implantados , Algoritmos
4.
PLoS One ; 16(7): e0254504, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34264988

RESUMO

INTRODUCTION: The efficacy of subthalamic nucleus (STN) deep brain stimulation (DBS) in Parkinson's disease (PD) depends on how closely electrodes are implanted relative to an individual's ideal stimulation location. Yet, previous studies have assessed how closely electrodes are implanted relative to the planned location, after homogenizing data to a reference. Thus here, we measured how accurately electrodes are implanted relative to an ideal, dorsal STN stimulation location, assessed on each individual's native imaging. This measure captures not only the technical error of stereotactic implantation but also constraints imposed by planning a suitable trajectory. METHODS: This cross-sectional study assessed 226 electrodes in 113 consecutive PD patients implanted with bilateral STN-DBS by experienced clinicians utilizing awake, microelectrode guided, surgery. The error (Euclidean distance) between the actual electrode trajectory versus a nominated ideal, dorsal STN stimulation location was determined in each hemisphere on native imaging and predictive factors sought. RESULTS: The median electrode location error was 1.62 mm (IQR = 1.23 mm). This error exceeded 3 mm in 28/226 electrodes (12.4%). Location error did not differ between hemispheres implanted first or second, suggesting brain shift was minimised. Location error did not differ between electrodes positioned with (48/226), or without, a preceding microelectrode trajectory shift (suggesting such shifts were beneficial). There was no relationship between location error and case order, arguing against a learning effect. DISCUSSION/CONCLUSION: The proximity of STN-DBS electrodes to a nominated ideal, dorsal STN, stimulation location is highly variable, even when implanted by experienced clinicians with brain shift minimized, and without evidence of a learning effect. Using this measure, we found that assessments on awake patients (microelectrode recordings and clinical examination) likely yielded beneficial intraoperative decisions to improve positioning. In many patients the error is likely to have reduced therapeutic efficacy. More accurate methods to implant STN-DBS electrodes relative to the ideal stimulation location are needed.


Assuntos
Núcleo Subtalâmico , Eletrodos Implantados , Humanos , Pessoa de Meia-Idade , Doença de Parkinson
5.
IBRO Neurosci Rep ; 10: 51-61, 2021 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-33842910

RESUMO

Alzheimer's disease (AD) is an incurable neurodegenerative disease in which the risk of development increases with age. People with AD are plagued with deficits in their cognition, memory, and basic social skills. Many of these deficits are believed to be caused by the formation of amyloid-ß plaques and neurofibrillary tangles in regions of the brain associated with memory, such as the hippocampus. However, one of the early, preclinical symptoms of AD is the loss of olfactory detection and discrimination. To determine if a mouse model of AD expresses the same olfactory dysfunction seen in human AD, 3xTg-AD mice were given a buried food test and, unlike previous studies, compared to their background and parental strains. Results showed that over 52 weeks, the 3xTg-AD mice took significantly longer to find the buried food than the control strains. The olfactory bulbs of the 3xTg-AD mice were removed, sliced, and stained using Congo red for histological analysis. Amyloid deposits were observed predominantly in the granule layer of the olfactory bulb beginning at 13 weeks of age in 3xTg-AD mice, but not in the control strains of mice. Further examination of the buried food test data revealed that 3xTg-AD females had a significantly longer latency to detect the buried food than males beginning at 26 weeks of age. Overall, this study provides further validation of the 3xTg-AD mouse model of AD and supports the idea that simple olfactory testing could be part of the diagnostic process for human AD.

6.
Curr Sports Med Rep ; 7(3): 171-5, 2008.
Artigo em Inglês | MEDLINE | ID: mdl-18477876

RESUMO

The medical benefits of regular physical activity, including weight loss and reduction in the risk of heart disease and certain cancers, are well known. Physicians are still reluctant, however, to prescribe exercise for their patients. Although many cite lack of time or poor reimbursement for counseling services, I believe the majority of primary care physicians are simply unsure of how to effectively begin discussing exercise with their patients. This article will review the medical benefits of exercise, basic principles of physiology, and then the components of an exercise prescription. With 250,000 deaths each year attributed to a sedentary lifestyle, it is incumbent upon physicians to include a discussion of regular physical activity with their patients, at every visit.


Assuntos
Aconselhamento , Exercício Físico/fisiologia , Relações Médico-Paciente , Doenças Cardiovasculares/prevenção & controle , Humanos , Estilo de Vida
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa