Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
País como assunto
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
Cancer Rep (Hoboken) ; 6(5): e1799, 2023 05.
Artigo em Inglês | MEDLINE | ID: mdl-36916606

RESUMO

BACKGROUND: Molecular markers for classification of gliomas include isocitrate dehydrogenase (IDH) mutations and codeletion of chromosomal arms 1p and 19q (1p/19q). While mutations in IDH enzymes result in the well-characterized production of oncometabolite 2-hydroxyglutarate, dysregulation of other metabolites in IDH tumors is less characterized. Similarly, the effects of 1p/19q codeletion on cellular metabolism are also unclear. AIM: This study aimed to quantify changes in tumor metabolites in human glioma tissue as a function of both IDH mutation and 1p/19q codeletion. METHODS AND RESULTS: Deidentified human glioma tissue and associated clinical data were obtained from the Emory University Winship Cancer Institute tissue biobank from 14 patients (WHO grades II, III, and IV; seven female and seven male). Proton (1 H) high-resolution magic angle spinning (HR-MAS) nuclear magnetic resonance (NMR) spectroscopy data were acquired using a 600 MHz Bruker AVANCE III NMR spectrometer. Metabolite concentrations were calculated using LCModel. Differences in metabolite concentrations as a function of IDH mutation, 1p/19q codeletion, and survival status were determined using Mann-Whitney U tests. Concentrations of alanine, glutamine, and glutamate were significantly lower in glioma tissue with IDH mutations compared to tissue with IDH wildtype. Additionally, glutamate concentration was significantly lower in glioma tissue with 1p/19q codeletion compared to intact 1p/19q. Exploratory analysis revealed alanine concentration varied significantly as a function of survival status. CONCLUSIONS: Given the emerging landscape of glioma treatments that target metabolic dysregulation, an improved understanding of altered metabolism in molecular sub-types of gliomas, including those with IDH mutation and 1p/19q codeletion, is an important consideration for treatment stratification and personalized medicine.


Assuntos
Glioma , Humanos , Masculino , Feminino , Glioma/genética , Glioma/patologia , Mutação , Imageamento por Ressonância Magnética/métodos , Aberrações Cromossômicas , Biomarcadores , Isocitrato Desidrogenase/genética
2.
Brain Imaging Behav ; 16(6): 2785-2796, 2022 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-36114313

RESUMO

Diversity of participants in biomedical research with respect to race, ethnicity, and biological sex is crucial, particularly given differences in disease prevalence, recovery, and survival rates between demographic groups. The objective of this systematic review was to report on the demographics of neuroimaging studies using magnetic resonance imaging (MRI). The Web of Science database was used and data collection was performed between June 2021 to November 2021; all articles were reviewed independently by at least two researchers. Articles utilizing MR data acquired in the United States, with n ≥ 10 human subjects, and published between 2010-2020 were included. Non-primary research articles and those published in journals that did not meet a quality control check were excluded. Of the 408 studies meeting inclusion criteria, approximately 77% report sex, 10% report race, and 4% report ethnicity. Demographic reporting also varied as function of disease studied, participant age range, funding, and publisher. We anticipate quantitative data on the extent, or lack, of reporting will be necessary to ensure inclusion of diverse populations in biomedical research.


Assuntos
Etnicidade , Imageamento por Ressonância Magnética , Humanos , Estados Unidos
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa