Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 32
Filtrar
1.
Am J Hum Genet ; 108(8): 1409-1422, 2021 08 05.
Artigo em Inglês | MEDLINE | ID: mdl-34237280

RESUMO

Chromosomal aberrations including structural variations (SVs) are a major cause of human genetic diseases. Their detection in clinical routine still relies on standard cytogenetics. Drawbacks of these tests are a very low resolution (karyotyping) and the inability to detect balanced SVs or indicate the genomic localization and orientation of duplicated segments or insertions (copy number variant [CNV] microarrays). Here, we investigated the ability of optical genome mapping (OGM) to detect known constitutional chromosomal aberrations. Ultra-high-molecular-weight DNA was isolated from 85 blood or cultured cells and processed via OGM. A de novo genome assembly was performed followed by structural variant and CNV calling and annotation, and results were compared to known aberrations from standard-of-care tests (karyotype, FISH, and/or CNV microarray). In total, we analyzed 99 chromosomal aberrations, including seven aneuploidies, 19 deletions, 20 duplications, 34 translocations, six inversions, two insertions, six isochromosomes, one ring chromosome, and four complex rearrangements. Several of these variants encompass complex regions of the human genome involved in repeat-mediated microdeletion/microduplication syndromes. High-resolution OGM reached 100% concordance compared to standard assays for all aberrations with non-centromeric breakpoints. This proof-of-principle study demonstrates the ability of OGM to detect nearly all types of chromosomal aberrations. We also suggest suited filtering strategies to prioritize clinically relevant aberrations and discuss future improvements. These results highlight the potential for OGM to provide a cost-effective and easy-to-use alternative that would allow comprehensive detection of chromosomal aberrations and structural variants, which could give rise to an era of "next-generation cytogenetics."


Assuntos
Aberrações Cromossômicas , Transtornos Cromossômicos/diagnóstico , Mapeamento Cromossômico/métodos , Análise Citogenética/métodos , Variações do Número de Cópias de DNA , Genoma Humano , Análise em Microsséries/métodos , Transtornos Cromossômicos/genética , Humanos , Cariotipagem
2.
Am J Med Genet A ; 194(7): e63531, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38421086

RESUMO

Duplications of the 3q29 cytoband are rare chromosomal copy number variations (CNVs) (overlapping or recurrent ~1.6 Mb 3q29 duplications). They have been associated with highly variable neurodevelopmental disorders (NDDs) with various associated features or reported as a susceptibility factor to the development of learning disabilities and neuropsychiatric disorders. The smallest region of overlap and the phenotype of 3q29 duplications remain uncertain. We here report a French cohort of 31 families with a 3q29 duplication identified by chromosomal microarray analysis (CMA), including 14 recurrent 1.6 Mb duplications, eight overlapping duplications (>1 Mb), and nine small duplications (<1 Mb). Additional genetic findings that may be involved in the phenotype were identified in 11 patients. Focusing on apparently isolated 3q29 duplications, patients present mainly mild NDD as suggested by a high rate of learning disabilities in contrast to a low proportion of patients with intellectual disabilities. Although some are de novo, most of the 3q29 duplications are inherited from a parent with a similar mild phenotype. Besides, the study of small 3q29 duplications does not provide evidence for any critical region. Our data suggest that the overlapping and recurrent 3q29 duplications seem to lead to mild NDD and that a severe or syndromic clinical presentation should warrant further genetic analyses.


Assuntos
Duplicação Cromossômica , Cromossomos Humanos Par 3 , Variações do Número de Cópias de DNA , Fenótipo , Humanos , Feminino , Masculino , Cromossomos Humanos Par 3/genética , Duplicação Cromossômica/genética , Criança , Variações do Número de Cópias de DNA/genética , Pré-Escolar , Transtornos do Neurodesenvolvimento/genética , Transtornos do Neurodesenvolvimento/patologia , Adolescente , Estudos de Coortes , Deficiência Intelectual/genética , Deficiência Intelectual/patologia , Adulto , Lactente
3.
Clin Genet ; 103(4): 401-412, 2023 04.
Artigo em Inglês | MEDLINE | ID: mdl-36576162

RESUMO

Chromoanagenesis is a cellular mechanism that leads to complex chromosomal rearrangements (CCR) during a single catastrophic event. It may result in loss and/or gain of genetic material and may be responsible for various phenotypes. These rearrangements are usually sporadic. However, some familial cases have been reported. Here, we studied six families in whom an asymptomatic or paucisymptomatic parent transmitted a CCR to its offspring in an unbalanced manner. The rearrangements were characterized by karyotyping, fluorescent in situ hybridization, chromosomal microarray (CMA) and/or whole genome sequencing (WGS) in the carrier parents and offspring. We then hypothesized meiosis-pairing figures between normal and abnormal parental chromosomes that may have led to the formation of new unbalanced rearrangements through meiotic recombination. Our work indicates that chromoanagenesis might be associated with a normal phenotype and normal fertility, even in males, and that WGS may be the only way to identify these events when there is no imbalance. Subsequently, the CCR can be transmitted to the next generation in an unbalanced and unpredictable manner following meiotic recombination. Thereby, prenatal diagnosis using CMA should be proposed to these families to detect any pathogenic imbalances in the offspring.


Assuntos
Aberrações Cromossômicas , Rearranjo Gênico , Masculino , Feminino , Gravidez , Humanos , Hibridização in Situ Fluorescente , Cariotipagem , Meiose , Translocação Genética
4.
Am J Med Genet A ; 191(2): 445-458, 2023 02.
Artigo em Inglês | MEDLINE | ID: mdl-36369750

RESUMO

Chromosome 1p36 deletion syndrome (1p36DS) is one of the most common terminal deletion syndromes (incidence between 1/5000 and 1/10,000 live births in the American population), due to a heterozygous deletion of part of the short arm of chromosome 1. The 1p36DS is characterized by typical craniofacial features, developmental delay/intellectual disability, hypotonia, epilepsy, cardiomyopathy/congenital heart defect, brain abnormalities, hearing loss, eyes/vision problem, and short stature. The aim of our study was to (1) evaluate the incidence of the 1p36DS in the French population compared to 22q11.2 deletion syndrome and trisomy 21; (2) review the postnatal phenotype related to microarray data, compared to previously publish prenatal data. Thanks to a collaboration with the ACLF (Association des Cytogénéticiens de Langue Française), we have collected data of 86 patients constituting, to the best of our knowledge, the second-largest cohort of 1p36DS patients in the literature. We estimated an average of at least 10 cases per year in France. 1p36DS seems to be much less frequent than 22q11.2 deletion syndrome and trisomy 21. Patients presented mainly dysmorphism, microcephaly, developmental delay/intellectual disability, hypotonia, epilepsy, brain malformations, behavioral disorders, cardiomyopathy, or cardiovascular malformations and, pre and/or postnatal growth retardation. Cardiac abnormalities, brain malformations, and epilepsy were more frequent in distal deletions, whereas microcephaly was more common in proximal deletions. Mapping and genotype-phenotype correlation allowed us to identify four critical regions responsible for intellectual disability. This study highlights some phenotypic variability, according to the deletion position, and helps to refine the phenotype of 1p36DS, allowing improved management and follow-up of patients.


Assuntos
Síndrome de DiGeorge , Síndrome de Down , Epilepsia , Deficiência Intelectual , Microcefalia , Humanos , Cromossomos Humanos Par 1 , Hipotonia Muscular , Deleção Cromossômica , Fenótipo
5.
Clin Genet ; 101(3): 307-316, 2022 03.
Artigo em Inglês | MEDLINE | ID: mdl-34866188

RESUMO

Inverted duplication deletion 8p [invdupdel(8p)] is a complex and rare chromosomal rearrangement that combines a distal deletion and an inverted interstitial duplication of the short arm of chromosome 8. Carrier patients usually have developmental delay and intellectual disability (ID), associated with various cerebral and extra-cerebral malformations. Invdupdel(8p) is the most common recurrent chromosomal rearrangement in ID patients with anomalies of the corpus callosum (AnCC). Only a minority of invdupdel(8p) cases reported in the literature to date had both brain cerebral imaging and chromosomal microarray (CMA) with precise breakpoints of the rearrangements, making genotype-phenotype correlation studies for AnCC difficult. In this study, we report the clinical, radiological, and molecular data from 36 new invdupdel(8p) cases including three fetuses and five individuals from the same family, with breakpoints characterized by CMA. Among those, 97% (n = 32/33) of patients presented with mild to severe developmental delay/ID and 34% had seizures with mean age of onset of 3.9 years (2 months-9 years). Moreover, out of the 24 patients with brain MRI and 3 fetuses with neuropathology analysis, 63% (n = 17/27) had AnCC. We review additional data from 99 previously published patients with invdupdel(8p) and compare data of 17 patients from the literature with both CMA analysis and brain imaging to refine genotype-phenotype correlations for AnCC. This led us to refine a region of 5.1 Mb common to duplications of patients with AnCC and discuss potential candidate genes within this region.


Assuntos
Deficiência Intelectual , Leucoencefalopatias , Deleção Cromossômica , Inversão Cromossômica , Cromossomos Humanos Par 8 , Corpo Caloso/diagnóstico por imagem , Estudos de Associação Genética , Humanos , Deficiência Intelectual/diagnóstico por imagem , Deficiência Intelectual/genética , Leucoencefalopatias/genética , Fenótipo , Trissomia
6.
Am J Hum Genet ; 101(6): 1021-1033, 2017 Dec 07.
Artigo em Inglês | MEDLINE | ID: mdl-29220674

RESUMO

ACTB encodes ß-actin, an abundant cytoskeletal housekeeping protein. In humans, postulated gain-of-function missense mutations cause Baraitser-Winter syndrome (BRWS), characterized by intellectual disability, cortical malformations, coloboma, sensorineural deafness, and typical facial features. To date, the consequences of loss-of-function ACTB mutations have not been proven conclusively. We describe heterozygous ACTB deletions and nonsense and frameshift mutations in 33 individuals with developmental delay, apparent intellectual disability, increased frequency of internal organ malformations (including those of the heart and the renal tract), growth retardation, and a recognizable facial gestalt (interrupted wavy eyebrows, dense eyelashes, wide nose, wide mouth, and a prominent chin) that is distinct from characteristics of individuals with BRWS. Strikingly, this spectrum overlaps with that of several chromatin-remodeling developmental disorders. In wild-type mouse embryos, ß-actin expression was prominent in the kidney, heart, and brain. ACTB mRNA expression levels in lymphoblastic lines and fibroblasts derived from affected individuals were decreased in comparison to those in control cells. Fibroblasts derived from an affected individual and ACTB siRNA knockdown in wild-type fibroblasts showed altered cell shape and migration, consistent with known roles of cytoplasmic ß-actin. We also demonstrate that ACTB haploinsufficiency leads to reduced cell proliferation, altered expression of cell-cycle genes, and decreased amounts of nuclear, but not cytoplasmic, ß-actin. In conclusion, we show that heterozygous loss-of-function ACTB mutations cause a distinct pleiotropic malformation syndrome with intellectual disability. Our biological studies suggest that a critically reduced amount of this protein alters cell shape, migration, proliferation, and gene expression to the detriment of brain, heart, and kidney development.


Assuntos
Anormalidades Múltiplas/genética , Actinas/genética , Deficiências do Desenvolvimento/genética , Haploinsuficiência/genética , Actinas/biossíntese , Adolescente , Adulto , Idoso , Animais , Ciclo Celular/genética , Proliferação de Células/genética , Criança , Pré-Escolar , Códon sem Sentido/genética , Coloboma/genética , Fácies , Feminino , Mutação da Fase de Leitura/genética , Deleção de Genes , Humanos , Lactente , Recém-Nascido , Deficiência Intelectual/genética , Masculino , Malformações do Desenvolvimento Cortical/genética , Camundongos , Interferência de RNA , RNA Interferente Pequeno/genética , Adulto Jovem
7.
Clin Genet ; 97(4): 668-669, 2020 04.
Artigo em Inglês | MEDLINE | ID: mdl-31875949

RESUMO

A, Closed symbols indicate patients affected with cancer. Open symbols indicate healthy individuals. The type of cancer and age at presentation are given in brackets. Blue circle represents c.4471_4474del variant and red circle represents the c.9648 + 1G > A. B, RNA was extracted from blood of patient III-3 and his sisters III-1 and III-4. RT-PCR analysis was performed with primers mapping to exons 25 and 27, and PCR products were separated by Bioanalyzer electrophoresis. The sizes of the DNA marker (M) are indicated to the left. LM, lower marker; UM, upper marker. C, Each RT-PCR product from patient III-3 was gel-purified and analyzed by Sanger sequencing. The 297-bp band corresponds to the reference BRCA2 transcript and the 150-bp band corresponds to a BRCA2 transcript lacking exon 26.


Assuntos
Proteína BRCA2/genética , Neoplasias Colorretais/genética , Predisposição Genética para Doença , Adulto , Processamento Alternativo/genética , Neoplasias Colorretais/patologia , Éxons/genética , Feminino , Estudos de Associação Genética , Humanos , Masculino , Mutação/genética , Linhagem
8.
J Med Genet ; 56(8): 526-535, 2019 08.
Artigo em Inglês | MEDLINE | ID: mdl-30923172

RESUMO

BACKGROUND: Balanced chromosomal rearrangements associated with abnormal phenotype are rare events, but may be challenging for genetic counselling, since molecular characterisation of breakpoints is not performed routinely. We used next-generation sequencing to characterise breakpoints of balanced chromosomal rearrangements at the molecular level in patients with intellectual disability and/or congenital anomalies. METHODS: Breakpoints were characterised by a paired-end low depth whole genome sequencing (WGS) strategy and validated by Sanger sequencing. Expression study of disrupted and neighbouring genes was performed by RT-qPCR from blood or lymphoblastoid cell line RNA. RESULTS: Among the 55 patients included (41 reciprocal translocations, 4 inversions, 2 insertions and 8 complex chromosomal rearrangements), we were able to detect 89% of chromosomal rearrangements (49/55). Molecular signatures at the breakpoints suggested that DNA breaks arose randomly and that there was no major influence of repeated elements. Non-homologous end-joining appeared as the main mechanism of repair (55% of rearrangements). A diagnosis could be established in 22/49 patients (44.8%), 15 by gene disruption (KANSL1, FOXP1, SPRED1, TLK2, MBD5, DMD, AUTS2, MEIS2, MEF2C, NRXN1, NFIX, SYNGAP1, GHR, ZMIZ1) and 7 by position effect (DLX5, MEF2C, BCL11B, SATB2, ZMIZ1). In addition, 16 new candidate genes were identified. Systematic gene expression studies further supported these results. We also showed the contribution of topologically associated domain maps to WGS data interpretation. CONCLUSION: Paired-end WGS is a valid strategy and may be used for structural variation characterisation in a clinical setting.


Assuntos
Aberrações Cromossômicas , Deficiências do Desenvolvimento/diagnóstico , Deficiências do Desenvolvimento/genética , Rearranjo Gênico , Estudos de Associação Genética , Fenótipo , Sequenciamento Completo do Genoma , Adolescente , Adulto , Biomarcadores , Criança , Pré-Escolar , Pontos de Quebra do Cromossomo , Variações do Número de Cópias de DNA , Feminino , Estudos de Associação Genética/métodos , Humanos , Lactente , Masculino , Relação Estrutura-Atividade , Translocação Genética , Adulto Jovem
9.
Chromosoma ; 127(2): 247-259, 2018 06.
Artigo em Inglês | MEDLINE | ID: mdl-29238858

RESUMO

In the interphase cell nucleus, chromosomes adopt a conserved and non-random arrangement in subnuclear domains called chromosome territories (CTs). Whereas chromosome translocation can affect CT organization in tumor cell nuclei, little is known about how aneuploidies can impact CT organization. Here, we performed 3D-FISH on control and trisomic 21 nuclei to track the patterning of chromosome territories, focusing on the radial distribution of trisomic HSA21 as well as 11 disomic chromosomes. We have established an experimental design based on cultured chorionic villus cells which keep their original mesenchymal features including a characteristic ellipsoid nuclear morphology and a radial CT distribution that correlates with chromosome size. Our study suggests that in trisomy 21 nuclei, the extra HSA21 induces a shift of HSA1 and HSA3 CTs out toward a more peripheral position in nuclear space and a higher compaction of HSA1 and HSA17 CTs. We posit that the presence of a supernumerary chromosome 21 alters chromosome compaction and results in displacement of other chromosome territories from their usual nuclear position.


Assuntos
Núcleo Celular/metabolismo , Vilosidades Coriônicas/metabolismo , Cromatina/metabolismo , Síndrome de Down/genética , Translocação Genética , Amniocentese , Aneuploidia , Núcleo Celular/ultraestrutura , Vilosidades Coriônicas/ultraestrutura , Cromatina/ultraestrutura , Síndrome de Down/metabolismo , Síndrome de Down/patologia , Feminino , Fibroblastos/metabolismo , Fibroblastos/ultraestrutura , Humanos , Hibridização in Situ Fluorescente , Interfase , Cariotipagem , Linfócitos/metabolismo , Linfócitos/ultraestrutura , Gravidez , Cultura Primária de Células
10.
Am J Hum Genet ; 98(2): 363-72, 2016 Feb 04.
Artigo em Inglês | MEDLINE | ID: mdl-26833329

RESUMO

Genetic studies of intellectual disability and identification of monogenic causes of obesity in humans have made immense contribution toward the understanding of the brain and control of body mass. The leptin > melanocortin > SIM1 pathway is dysregulated in multiple monogenic human obesity syndromes but its downstream targets are still unknown. In ten individuals from six families, with overlapping 6q16.1 deletions, we describe a disorder of variable developmental delay, intellectual disability, and susceptibility to obesity and hyperphagia. The 6q16.1 deletions segregated with the phenotype in multiplex families and were shown to be de novo in four families, and there was dramatic phenotypic overlap among affected individuals who were independently ascertained without bias from clinical features. Analysis of the deletions revealed a ∼350 kb critical region on chromosome 6q16.1 that encompasses a gene for proneuronal transcription factor POU3F2, which is important for hypothalamic development and function. Using morpholino and mutant zebrafish models, we show that POU3F2 lies downstream of SIM1 and controls oxytocin expression in the hypothalamic neuroendocrine preoptic area. We show that this finding is consistent with the expression patterns of POU3F2 and related genes in the human brain. Our work helps to further delineate the neuro-endocrine control of energy balance/body mass and demonstrates that this molecular pathway is conserved across multiple species.


Assuntos
Proteínas de Homeodomínio/genética , Deficiência Intelectual/genética , Obesidade/genética , Fatores do Domínio POU/genética , Deleção de Sequência , Adolescente , Adulto , Animais , Fatores de Transcrição Hélice-Alça-Hélice Básicos/genética , Fatores de Transcrição Hélice-Alça-Hélice Básicos/metabolismo , Índice de Massa Corporal , Linhagem Celular , Criança , Pré-Escolar , Cromossomos Humanos Par 6/genética , Modelos Animais de Doenças , Metabolismo Energético , Feminino , Proteínas de Homeodomínio/metabolismo , Humanos , Hipotálamo/metabolismo , Masculino , Pessoa de Meia-Idade , Ocitocina/metabolismo , Fatores do Domínio POU/metabolismo , Linhagem , Fenótipo , Proteínas Repressoras/genética , Proteínas Repressoras/metabolismo , Adulto Jovem , Peixe-Zebra
11.
Am J Hum Genet ; 99(3): 753-761, 2016 09 01.
Artigo em Inglês | MEDLINE | ID: mdl-27569547

RESUMO

The neuromuscular junction (NMJ) is one of the best-studied cholinergic synapses. Inherited defects of peripheral neurotransmission result in congenital myasthenic syndromes (CMSs), a clinically and genetically heterogeneous group of rare diseases with fluctuating fatigable muscle weakness as the clinical hallmark. Whole-exome sequencing and Sanger sequencing in six unrelated families identified compound heterozygous and homozygous mutations in SLC5A7 encoding the presynaptic sodium-dependent high-affinity choline transporter 1 (CHT), which is known to be mutated in one dominant form of distal motor neuronopathy (DHMN7A). We identified 11 recessive mutations in SLC5A7 that were associated with a spectrum of severe muscle weakness ranging from a lethal antenatal form of arthrogryposis and severe hypotonia to a neonatal form of CMS with episodic apnea and a favorable prognosis when well managed at the clinical level. As expected given the critical role of CHT for multisystemic cholinergic neurotransmission, autonomic dysfunctions were reported in the antenatal form and cognitive impairment was noticed in half of the persons with the neonatal form. The missense mutations induced a near complete loss of function of CHT activity in cell models. At the human NMJ, a delay in synaptic maturation and an altered maintenance were observed in the antenatal and neonatal forms, respectively. Increased synaptic expression of butyrylcholinesterase was also observed, exposing the dysfunction of cholinergic metabolism when CHT is deficient in vivo. This work broadens the clinical spectrum of human diseases resulting from reduced CHT activity and highlights the complexity of cholinergic metabolism at the synapse.


Assuntos
Apneia/genética , Mutação/genética , Miastenia Gravis/genética , Terminações Pré-Sinápticas/metabolismo , Simportadores/genética , Simportadores/metabolismo , Adolescente , Apneia/complicações , Apneia/metabolismo , Apneia/patologia , Artrogripose/complicações , Artrogripose/genética , Butirilcolinesterase/metabolismo , Criança , Pré-Escolar , Neurônios Colinérgicos/metabolismo , Neurônios Colinérgicos/patologia , Análise Mutacional de DNA , Exoma/genética , Feminino , Genes Recessivos/genética , Células HEK293 , Heterozigoto , Homozigoto , Humanos , Lactente , Recém-Nascido , Masculino , Hipotonia Muscular/genética , Debilidade Muscular/complicações , Debilidade Muscular/genética , Debilidade Muscular/patologia , Mutação de Sentido Incorreto/genética , Miastenia Gravis/complicações , Miastenia Gravis/metabolismo , Miastenia Gravis/patologia , Junção Neuromuscular/enzimologia , Junção Neuromuscular/metabolismo , Junção Neuromuscular/patologia , Terminações Pré-Sinápticas/patologia , Simportadores/deficiência , Transmissão Sináptica
12.
Reprod Biomed Online ; 37(1): 100-106, 2018 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-29680196

RESUMO

RESEARCH QUESTION: Is sperm fluorescence in-situ hybridization (FISH) useful to evaluate the risk of chromosomally unbalanced gametes in interchromosomal reciprocal insertion (IRI) carriers? How do these imbalances lead to recurrent miscarriages? DESIGN: This study reports a clinical and molecular study of a rare familial balanced IRI resulting in recurrent spontaneous miscarriage. Sperm FISH was performed to estimate the number of unbalanced gametes. RESULTS: A 31-year-old healthy male (proband) and his 28-year-old female partner were referred to the Genetics Department for three spontaneous miscarriages occurring during the first trimester of pregnancy. FISH analysis of the proband with the LSI TRA/D (14q11.2) and DiGeorge N25 (22q11.2) break-apart probes showed the presence of a balanced IRI between 14q11.2 and 22q11.2 chromosomal regions. This IRI was also identified in the proband's father. Sperm FISH with the same probes showed that more than 40% of gametes of the proband were unbalanced for either 14q11.2 or 22q11.2, despite normal sperm parameters. FISH analysis of a product of conception indicated that unbalanced gametes result in a non-viable fetus. CONCLUSIONS: This study shows the value of sperm FISH analysis in improving genetic reproductive advice for IRI carriers. Disruption of critical genes through this rearrangement and their consequent functional impairment could result in recurrent miscarriages. In this case, several genes located in the 14q11.2 region, particularly RNase 3, would be good candidates to explain the lethality of the imbalances.


Assuntos
Aborto Habitual/genética , Segregação de Cromossomos , Meiose , Espermatozoides/metabolismo , Adulto , Feminino , Humanos , Hibridização in Situ Fluorescente , Masculino , Gravidez , Análise do Sêmen , Translocação Genética
14.
Birth Defects Res A Clin Mol Teratol ; 106(9): 793-7, 2016 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-27346851

RESUMO

BACKGROUND: Microdeletions encompassing chromosome bands 2q14.1q14.3 are rare. To date, eight reports of relatively large deletions of this region (∼20 Mb) but only two small deletions (<6 Mb) have been reported. These deletions can cause a variable phenotype depending on the size and location of the deletion. Cognitive disability, facial dysmorphism, and postnatal growth retardation are the most common phenotypic features. CASE: We report on a novel 5.8 Mb deletion of 2q14.1q14.3 identified by array comparative genomic hybridization in a fetus with severe intrauterine growth retardation and partial agenesis of the corpus callosum. The deletion contained 24 coding genes including STEAP3, GLI2, and RNU4ATAC and was inherited from the mild affected mother. A sibling developmental delay and similar dysmorphic facial features was found to have inherited the same deletion. CONCLUSION: This case emphasizes the variable expressivity of the 2q14 microdeletion and reinforces the hypothesis that agenesis of corpus callosum, microcephaly, developmental delay, and distinctive craniofacial features may be part of the phenotypic spectrum characterizing the affected patients. We suggest that GLI2 is a dosage-sensitive gene that may be responsible for the agenesis of corpus callosum observed in the proband. Birth Defects Research (Part A) 106:793-797, 2016. © 2016 Wiley Periodicals, Inc.


Assuntos
Agenesia do Corpo Caloso/genética , Deleção Cromossômica , Cromossomos Humanos Par 2/genética , Retardo do Crescimento Fetal/genética , Fatores de Transcrição Kruppel-Like/genética , Proteínas Nucleares/genética , RNA Nuclear Pequeno/genética , Adulto , Feminino , Humanos , Gravidez , Proteína Gli2 com Dedos de Zinco
15.
Cytogenet Genome Res ; 146(1): 28-32, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-26201711

RESUMO

Fetuses with increased nuchal translucency thickness (NT) are at increased risk for chromosomal abnormalities. In case of a normal karyotype, a minority of them may present with structural abnormalities or genetic syndromes, which may be related to submicroscopic chromosomal imbalances. The objective of this study was to evaluate whether MLPA screening of 21 syndromic and subtelomeric regions could improve the detection rate of small chromosomal aberrations in fetuses with increased NT and a normal karyotype. A total of 106 prenatal samples from fetuses with NT ≥ 99th centile and normal R- and G-banding were analyzed by MLPA for subtelomeric imbalances (SALSA P036 and P070) and 21 syndromic regions (SALSA P245). One sample showed a benign CNV (dup(8)pter, FBXO25 gene), and 1 patient was found to have a loss of 18 qter and a gain of 5 pter as a result of an unbalanced translocation. The incidence of cryptic pathogenic variants was <1% or 2.7% when only fetuses with other ultrasound abnormalities were taken into account. Submicroscopic imbalances in fetuses with increased NT may be individually rare, and genome-wide screening seems more likely to improve the diagnostic yield in these fetuses.


Assuntos
Deleção Cromossômica , Transtornos Cromossômicos/diagnóstico por imagem , Duplicação Cromossômica , Técnicas de Diagnóstico Molecular , Técnicas de Amplificação de Ácido Nucleico , Adolescente , Adulto , Transtornos Cromossômicos/genética , Variações do Número de Cópias de DNA , Sondas de DNA/genética , Feminino , Humanos , Cariótipo , Medição da Translucência Nucal , Adulto Jovem
16.
Am J Med Genet A ; 167A(1): 250-3, 2015 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-25425496

RESUMO

Microdeletions of 17q12 encompassing TCF2 are associated with maturity-onset of diabetes of the young type 5, cystic renal disease, pancreatic atrophy, Mullerian aplasia in females and variable cognitive impairment. We report on a patient with a de novo 17q12 microdeletion, 1.8 Mb in size, associated with congenital diaphragmatic hernia (CDH). The 5-year-old male patient presented multicystic renal dysplasia kidneys, minor facial dysmorphic features and skeletal anomalies, but neither developmental delay nor behavioral abnormalities. CDH has been previously associated with the 17q12 microdeletion syndrome only in one prenatal case. The present study reinforces the hypothesis that CDH is part of the phenotype for 17q12 microdeletion and that 17q12 encompasses candidate(s) gene(s) involved in diaphragm development. We suggest that PIGW, a gene involved in an early step of GPI biosynthesis, could be a strong candidate gene for CDH.


Assuntos
Deleção Cromossômica , Cromossomos Humanos Par 17/genética , Hérnias Diafragmáticas Congênitas/genética , Pré-Escolar , Hibridização Genômica Comparativa , Fácies , Humanos , Lactente , Recém-Nascido , Síndrome
17.
Birth Defects Res A Clin Mol Teratol ; 100(6): 507-11, 2014 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-24753315

RESUMO

BACKGROUND: Interstitial 2q36 deletion is a rare event. Only two previously published cases of 2q36 deletions were characterized using array-CGH. This is the first case diagnosed prenatally. METHODS: We report on the prenatal diagnosis of a 2q36.1q36.3 interstitial deletion in a fetus with facial dysmorphism, spina bifida, and cleft palate. RESULTS: Array-CGH analysis revealed a 5.6 Mb interstitial deletion of the long arm of chromosome 2q36.1q36.3, including the PAX3 and EPHA4 genes. CONCLUSION: The present study reinforces the hypothesis that PAX3 haploinsufficiency may be associated with neural tube defects in humans and suggests that the EPHA4 gene might be implicated during palate development. This report also illustrates the added value of array-CGH to detect cryptic chromosomal imbalances in malformed fetuses and to improve genetic counseling prenatally.


Assuntos
Anormalidades Múltiplas/genética , Deleção Cromossômica , Cromossomos Humanos Par 2 , Fissura Palatina/genética , Fatores de Transcrição Box Pareados/genética , Receptor EphA4/genética , Disrafismo Espinal/genética , Anormalidades Múltiplas/diagnóstico , Anormalidades Múltiplas/patologia , Adulto , Fissura Palatina/diagnóstico , Fissura Palatina/patologia , Hibridização Genômica Comparativa , Feminino , Feto , Regulação da Expressão Gênica no Desenvolvimento , Humanos , Cariotipagem , Fator de Transcrição PAX3 , Fatores de Transcrição Box Pareados/deficiência , Gravidez , Diagnóstico Pré-Natal , Receptor EphA4/deficiência , Disrafismo Espinal/diagnóstico , Disrafismo Espinal/patologia
18.
Am J Med Genet A ; 161A(1): 162-5, 2013 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-23239647

RESUMO

Microdeletions of 8q21.3-8q22.1 have been identified in all patients with Nablus mask-like facial syndrome (NMLFS). A recent report of a patient without this specific phenotype presented a 1.6 Mb deletion in this region that partially overlapped with previously reported 8q21.3 microdeletions, thus restricting critical region for this syndrome. We report on another case of an 8q21.3 deletion revealed by array comparative genome hybridization (aCGH) in a 4-year-old child with global developmental delay, autism, microcephaly, but without Nablus phenotype. The size of the interstitial deletion was estimated to span 5.2 Mb. By combining the data from previous reports on 8q21.3-8q22.1 deletions and our case, we were able to narrow the critical region of Nablus syndrome to 0.5 Mb. The deleted region includes FAM92A1, which seems to be a potential candidate gene in NMLFS.


Assuntos
Anormalidades Múltiplas/diagnóstico , Anormalidades Múltiplas/genética , Blefarofimose/diagnóstico , Blefarofimose/genética , Deleção Cromossômica , Anormalidades Craniofaciais/diagnóstico , Anormalidades Craniofaciais/genética , Transtorno Autístico/genética , Cromossomos Humanos Par 8/genética , Hibridização Genômica Comparativa/métodos , Deficiências do Desenvolvimento/genética , Humanos , Quinase I-kappa B/genética , Quinase I-kappa B/metabolismo , Hibridização in Situ Fluorescente/métodos , Lactente , Cariótipo , Masculino , Microcefalia/genética , Fenótipo
19.
Diagnostics (Basel) ; 13(23)2023 Nov 30.
Artigo em Inglês | MEDLINE | ID: mdl-38066817

RESUMO

Optical genome mapping (OGM) is an alternative to classical cytogenetic techniques to improve the detection rate of clinically significant genomic abnormalities. The isolation of high-molecular-weight (HMW) DNA is critical for a successful OGM analysis. HMW DNA quality depends on tissue type, sample size, and storage conditions. We assessed the feasibility of OGM analysis of DNA from nine umbilical cord (UC) and six chorionic villus (CV) samples collected after the spontaneous or therapeutic termination of pregnancy. We analyzed quality control metrics provided by the Saphyr system (Bionano Genomics) and assessed the length of extracted DNA molecules using pulsed-field capillary electrophoresis. OMG data were successfully analyzed for all six CV samples. Five of the UC samples did not meet the Saphyr quality criteria, mainly due to poor DNA quality. In this regard, we found that DNA quality assessment with pulsed-field capillary electrophoresis can predict a successful OGM analysis. OGM data were fully concordant with the results of standard cytogenetic methods. Moreover, OGM detected an average of 14 additional structural variants involving OMIM genes per sample. On the basis of our results, we established the optimal conditions for sample storage and preparation required for a successful OGM analysis. We recommend checking DNA quality before analysis with pulsed-field capillary electrophoresis if the storage conditions were not ideal or if the quality of the sample is poor. OGM can therefore be performed on fetal tissue harvested after the termination of pregnancy, which opens up the perspective for improved diagnostic yield.

20.
Clin Chim Acta ; 551: 117594, 2023 Nov 01.
Artigo em Inglês | MEDLINE | ID: mdl-37832906

RESUMO

PURPOSE: Cytogenetic analysis provides important information for prenatal decision-making and genetic counseling. Optical genome mapping (OGM) has demonstrated its performances in retrospective studies. In our prospective study, we assessed the quality of DNA obtained from cultures of amniotic fluid (AF) and chorionic villi (CV) and evaluated the ability of OGM to detect all clinically relevant aberrations identified by standard methods. METHODS: A total of 37 prenatal samples from pregnancies with a fetal anomaly on ultrasound were analyzed prospectively by OGM between January 1, 2021 and June 31, 2022. OGM results were interpreted blindly and compared to the results obtained by standard techniques. RESULTS: OGM results were interpretable in 92% of samples. We observed 100% concordance between OGM and karyotype and/or chromosomal microarray results. In addition, OGM identified a median of 30 small (<100 kb) structural variations per case with the involvement of 12 OMIM genes, of which 3 were OMIM morbid genes. CONCLUSION: This prospective study showed OGM performed well in detecting genomic alterations in cell cultures from prenatal samples. The place of OGM in relation to CMA or exome sequencing remains to be defined in order to optimize the prenatal diagnostic procedure.


Assuntos
Aberrações Cromossômicas , Diagnóstico Pré-Natal , Gravidez , Feminino , Humanos , Estudos Prospectivos , Estudos Retrospectivos , Cariotipagem , Análise Citogenética , Mapeamento Cromossômico
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa