Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 40
Filtrar
1.
PLoS Pathog ; 18(9): e1010850, 2022 09.
Artigo em Inglês | MEDLINE | ID: mdl-36121876

RESUMO

Viroids, a fascinating group of plant pathogens, are subviral agents composed of single-stranded circular noncoding RNAs. It is well-known that nuclear-replicating viroids exploit host DNA-dependent RNA polymerase II (Pol II) activity for transcription from circular RNA genome to minus-strand intermediates, a classic example illustrating the intrinsic RNA-dependent RNA polymerase activity of Pol II. The mechanism for Pol II to accept single-stranded RNAs as templates remains poorly understood. Here, we reconstituted a robust in vitro transcription system and demonstrated that Pol II also accepts minus-strand viroid RNA template to generate plus-strand RNAs. Further, we purified the Pol II complex on RNA templates for nano-liquid chromatography-tandem mass spectrometry analysis and identified a remodeled Pol II missing Rpb4, Rpb5, Rpb6, Rpb7, and Rpb9, contrasting to the canonical 12-subunit Pol II or the 10-subunit Pol II core on DNA templates. Interestingly, the absence of Rpb9, which is responsible for Pol II fidelity, explains the higher mutation rate of viroids in comparison to cellular transcripts. This remodeled Pol II is active for transcription with the aid of TFIIIA-7ZF and appears not to require other canonical general transcription factors (such as TFIIA, TFIIB, TFIID, TFIIE, TFIIF, TFIIH, and TFIIS), suggesting a distinct mechanism/machinery for viroid RNA-templated transcription. Transcription elongation factors, such as FACT complex, PAF1 complex, and SPT6, were also absent in the reconstituted transcription complex. Further analyses of the critical zinc finger domains in TFIIIA-7ZF revealed the first three zinc finger domains pivotal for RNA template binding. Collectively, our data illustrated a distinct organization of Pol II complex on viroid RNA templates, providing new insights into viroid replication, the evolution of transcription machinery, as well as the mechanism of RNA-templated transcription.


Assuntos
Fatores Genéricos de Transcrição , Viroides , DNA/metabolismo , RNA/metabolismo , RNA Polimerase II/genética , RNA Polimerase II/metabolismo , RNA Circular/genética , RNA Polimerase Dependente de RNA/genética , Fator de Transcrição TFIIA/genética , Fator de Transcrição TFIIA/metabolismo , Fator de Transcrição TFIIB/genética , Fator de Transcrição TFIID/genética , Fator de Transcrição TFIID/metabolismo , Fator de Transcrição TFIIIA/metabolismo , Fatores Genéricos de Transcrição/genética , Fatores Genéricos de Transcrição/metabolismo , Transcrição Gênica , Viroides/genética , Viroides/metabolismo
2.
J Exp Bot ; 75(1): 405-421, 2024 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-37728561

RESUMO

The photosynthesis-induced accumulation of reactive oxygen species in chloroplasts can lead to oxidative stress, triggering changes in protein synthesis, degradation, and the assembly/disassembly of protein complexes. Using shot-gun proteomics, we identified methyl viologen-induced changes in protein abundance in wild-type Arabidopsis and oxidative stress-hypersensitive fsd1-1 and fsd1-2 knockout mutants, which are deficient in IRON SUPEROXIDE DISMUTASE 1 (FSD1). The levels of proteins that are localized in chloroplasts and the cytoplasm were modified in all lines treated with methyl viologen. Compared with the wild-type, fsd1 mutants showed significant changes in metabolic protein and chloroplast chaperone levels, together with increased ratio of cytoplasmic, peroxisomal, and mitochondrial proteins. Different responses in proteins involved in the disassembly of photosystem II-light harvesting chlorophyll a/b binding proteins were observed. Moreover, the abundance of PATELLIN 4, a phospholipid-binding protein enriched in stomatal lineage, was decreased in response to methyl viologen. Reverse genetic studies using patl4 knockout mutants and a PATELLIN 4 complemented line indicate that PATELLIN 4 affects plant responses to oxidative stress by effects on stomatal closure.


Assuntos
Proteínas de Arabidopsis , Arabidopsis , Arabidopsis/metabolismo , Paraquat/farmacologia , Paraquat/metabolismo , Proteoma/metabolismo , Clorofila A/metabolismo , Clorofila A/farmacologia , Estresse Oxidativo , Fotossíntese , Cloroplastos/metabolismo , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo
3.
Plant Physiol ; 190(4): 2847-2867, 2022 11 28.
Artigo em Inglês | MEDLINE | ID: mdl-35993881

RESUMO

The roles of mitogen-activated protein kinases (MAPKs) in plant-fungal pathogenic interactions are poorly understood in crops. Here, microscopic, phenotypic, proteomic, and biochemical analyses revealed that roots of independent transcription activator-like effector nuclease (TALEN)-based knockout lines of barley (Hordeum vulgare L.) MAPK 3 (HvMPK3 KO) were resistant against Fusarium graminearum infection. When co-cultured with roots of the HvMPK3 KO lines, F. graminearum hyphae were excluded to the extracellular space, the growth pattern of extracellular hyphae was considerably deregulated, mycelia development was less efficient, and number of appressoria-like structures and their penetration potential were substantially reduced. Intracellular penetration of hyphae was preceded by the massive production of reactive oxygen species (ROS) in attacked cells of the wild-type (WT), but ROS production was mitigated in the HvMPK3 KO lines. Suppression of ROS production in these lines coincided with elevated abundance of catalase (CAT) and ascorbate peroxidase (APX). Moreover, differential proteomic analysis revealed downregulation of several defense-related proteins in WT, and the upregulation of pathogenesis-related protein 1 (PR-1) and cysteine proteases in HvMPK3 KO lines. Proteins involved in suberin formation, such as peroxidases, lipid transfer proteins (LTPs), and the GDSL esterase/lipase (containing "GDSL" aminosequence motif) were differentially regulated in HvMPK3 KO lines after F. graminearum inoculation. Consistent with proteomic analysis, microscopic observations showed enhanced suberin accumulation in roots of HvMPK3 KO lines, most likely contributing to the arrested infection by F. graminearum. These results suggest that TALEN-based knockout of HvMPK3 leads to barley root resistance against Fusarium root rot.


Assuntos
Fusarium , Hordeum , Fusarium/fisiologia , Hordeum/genética , Hordeum/microbiologia , Doenças das Plantas/genética , Doenças das Plantas/microbiologia , Proteômica , Espécies Reativas de Oxigênio/metabolismo , Proteína Quinase 3 Ativada por Mitógeno/metabolismo , Nucleases dos Efetores Semelhantes a Ativadores de Transcrição/metabolismo
4.
Mol Reprod Dev ; 89(7): 298-311, 2022 07.
Artigo em Inglês | MEDLINE | ID: mdl-35762042

RESUMO

The complex composition of the follicular fluid (FF), the intimate proximity to the oocyte, and the continual changes in their composition have a major effect on folliculogenesis and oogenesis. To date, the profiling of FF proteomes during follicle selection, development, and ovulation has not been comprehensively investigated. Therefore, a shotgun proteomics approach and bioinformatics analyses were used to profile the proteomes of equine FF harvested in vivo from follicles at the following development stages: predeviation (18-20 mm), deviation (22-25 mm), postdeviation (26-29 mm), preovulatory (30-35 mm), and impending ovulation. A total of 294 proteins were detected in FF (FDR <1%), corresponding to 65 common proteins and 124, 142, 167, 132, and 142 proteins in the predeviation, deviation, postdeviation, preovulatory, and impending ovulation groups, respectively. The higher expression of properdin and several other proteins belonging to the complement system during the deviation time and ovulation suggested their contribution in the selection of the future dominant follicle and ovulation. Apolipoprotein A-1 and antithrombin-III appeared to be important throughout folliculogenesis. The "complement and coagulation cascades" was the major KEGG pathway across all stages of follicle development. The significant expression of several proteins belonging to the serine-type endopeptidase indicated their likely contribution to follicle and oocyte development. Our data provide an extensive description and functional analyses of the equine FF proteome during follicle selection, development, and ovulation. This information will help improve understanding of the ovarian function and ovulatory dysfunctions and might serve as a reference for future biomarker discovery for oocyte quality assessment.


Assuntos
Líquido Folicular , Proteômica , Animais , Feminino , Líquido Folicular/metabolismo , Cavalos , Folículo Ovariano/metabolismo , Ovulação , Proteoma/metabolismo
5.
J Nutr ; 151(11): 3329-3338, 2021 11 02.
Artigo em Inglês | MEDLINE | ID: mdl-34510207

RESUMO

BACKGROUND: Selenoprotein H (SELONOH), a member of the thioredoxin-like family proteins, is prioritized to degradation in selenium (Se) insufficiency. Recent studies implicate protective roles of SELENOH in oxidative stress, cellular senescence, and intestinal tumorigenesis. Although the nonselenoprotein H0YE28 is suggested as shortened SELENOH according to genomic and proteomic data repositories, this variant has not been verified biochemically. OBJECTIVES: We sought to identify SELENOH isoforms and explore the impact of Se flux on selenoprotein expression in SELENOH-overexpressing cells. METHODS: A vector expressing a FLAG (the DYKDDDDK sequence) tag on the N-terminal end of wild-type SELENOH was constructed and transiently transfected into 293T cells incubated with graded concentrations of Na2SeO3 (0-200 nM). Cells were subjected to immunoprecipitation, LC-MS/MS protein analysis, immunoblotting, qRT-PCR, and senescence assays. Data were analyzed by 1-way or 2-way ANOVA. RESULTS: Results of anti-FLAG immunoblotting showed that FLAG-SELENOH transfection increased (3.7-fold; P < 0.05) protein levels of the long, but not the short, SELENOH variants in the presence of Na2SeO3 (100 nM). By contrast, SELENOH mRNA levels were increased by 53-fold upon FLAG-SELENOH transfection but were comparable with or without supplemental Se (100 nM). LC-MS/MS analyses of anti-FLAG immunoprecipitates designated both anti-FLAG bands as SELENOH and co-identified three 60S ribosomal and 9 other proteins. Overexpression of FLAG-SELENOH 1) reduced glutathione peroxidase 1 and thioredoxin reductase 1 expression at the protein rather than the mRNA level in the absence but not presence of supplemental Se (100 nM; P < 0.05); 2) increased mRNA levels of 3 heat shock proteins (HSP27, HSP70-1A, and HSP70-1B; P < 0.05); and 3) reduced senescence induced by H2O2 (20 µM, 4 hours; P < 0.05). CONCLUSIONS: These cellular studies demonstrate a Se-independent, shortened SELENOH variant and suggest competition of overexpressed FLAG-SELENOH with 2 other selenoproteins for the expression at the protein but not the mRNA level in Se insufficiency.


Assuntos
Proteômica , Selênio , Cromatografia Líquida , Proteínas de Ligação a DNA , Glutationa Peroxidase , Células HEK293 , Humanos , Peróxido de Hidrogênio , Isoformas de Proteínas/genética , RNA Mensageiro/genética , Selenoproteínas/genética , Espectrometria de Massas em Tandem
6.
Mol Cell Proteomics ; 16(9): 1591-1609, 2017 09.
Artigo em Inglês | MEDLINE | ID: mdl-28706004

RESUMO

Microtubule organization and dynamics are critical for key developmental processes such as cell division, elongation, and morphogenesis. Microtubule severing is an essential regulator of microtubules and is exclusively executed by KATANIN 1 in Arabidopsis In this study, we comparatively studied the proteome-wide effects in two KATANIN 1 mutants. Thus, shotgun proteomic analysis of roots and aerial parts of single nucleotide mutant fra2 and T-DNA insertion mutant ktn1-2 was carried out. We have detected 42 proteins differentially abundant in both fra2 and ktn1-2 KATANIN 1 dysfunction altered the abundance of proteins involved in development, metabolism, and stress responses. The differential regulation of tubulins and microtubule-destabilizing protein MDP25 implied a feedback microtubule control in KATANIN 1 mutants. Furthermore, deregulation of profilin 1, actin-depolymerizing factor 3, and actin 7 was observed. These findings were confirmed by immunoblotting analysis of actin and by microscopic observation of actin filaments using fluorescently labeled phalloidin. Results obtained by quantitative RT-PCR analysis revealed that changed protein abundances were not a consequence of altered expression levels of corresponding genes in the mutants. In conclusion, we show that abundances of several cytoskeletal proteins as well as organization of microtubules and the actin cytoskeleton are amended in accordance with defective microtubule severing.


Assuntos
Actinas/metabolismo , Proteínas de Arabidopsis/genética , Arabidopsis/metabolismo , Biologia Celular , Retroalimentação Fisiológica , Katanina/genética , Microtúbulos/metabolismo , Mutação/genética , Proteômica/métodos , Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Ontologia Genética , Genes de Plantas , Anotação de Sequência Molecular , Mapas de Interação de Proteínas , Proteoma/metabolismo
7.
Int J Mol Sci ; 20(1)2018 Dec 26.
Artigo em Inglês | MEDLINE | ID: mdl-30587782

RESUMO

Phospholipase Dα1 (PLDα1) belongs to phospholipases, a large phospholipid hydrolyzing protein family. PLDα1 has a substrate preference for phosphatidylcholine leading to enzymatic production of phosphatidic acid, a lipid second messenger with multiple cellular functions. PLDα1 itself is implicated in biotic and abiotic stress responses. Here, we present a shot-gun differential proteomic analysis on roots of two Arabidopsis pldα1 mutants compared to the wild type. Interestingly, PLDα1 deficiency leads to altered abundances of proteins involved in diverse processes related to membrane transport including endocytosis and endoplasmic reticulum-Golgi transport. PLDα1 may be involved in the stability of attachment sites of endoplasmic reticulum to the plasma membrane as suggested by increased abundance of synaptotagmin 1, which was validated by immunoblotting and whole-mount immunolabelling analyses. Moreover, we noticed a robust abundance alterations of proteins involved in mitochondrial import and electron transport chain. Notably, the abundances of numerous proteins implicated in glucosinolate biosynthesis were also affected in pldα1 mutants. Our results suggest a broader biological involvement of PLDα1 than anticipated thus far, especially in the processes such as endomembrane transport, mitochondrial protein import and protein quality control, as well as glucosinolate biosynthesis.


Assuntos
Proteínas de Arabidopsis/metabolismo , Arabidopsis/metabolismo , Glucosinolatos/biossíntese , Proteínas Mitocondriais/metabolismo , Fosfolipase D/metabolismo , Proteoma/metabolismo , Proteômica , Proteínas de Arabidopsis/genética , Cromatografia Líquida de Alta Pressão , Endocitose , Ontologia Genética , Fosfolipase D/genética , Raízes de Plantas/metabolismo , Transporte Proteico , Sinaptotagmina I/metabolismo , Espectrometria de Massas em Tandem , Proteína Desacopladora 1/metabolismo
8.
Int J Mol Sci ; 16(12): 28429-48, 2015 Nov 30.
Artigo em Inglês | MEDLINE | ID: mdl-26633370

RESUMO

Maize (Zea mays L.) is a host to numerous pathogenic species that impose serious diseases to its ear and foliage, negatively affecting the yield and the quality of the maize crop. A considerable amount of research has been carried out to elucidate mechanisms of maize-pathogen interactions with a major goal to identify defense-associated proteins. In this review, we summarize interactions of maize with its agriculturally important pathogens that were assessed at the proteome level. Employing differential analyses, such as the comparison of pathogen-resistant and susceptible maize varieties, as well as changes in maize proteomes after pathogen challenge, numerous proteins were identified as possible candidates in maize resistance. We describe findings of various research groups that used mainly mass spectrometry-based, high through-put proteomic tools to investigate maize interactions with fungal pathogens Aspergillus flavus, Fusarium spp., and Curvularia lunata, and viral agents Rice Black-streaked Dwarf Virus and Sugarcane Mosaic Virus.


Assuntos
Interações Hospedeiro-Patógeno , Doenças das Plantas , Proteômica , Zea mays/metabolismo , Resistência à Doença , Doenças das Plantas/microbiologia , Doenças das Plantas/virologia , Proteínas de Plantas/metabolismo , Proteoma/metabolismo , Proteômica/métodos
9.
J Proteome Res ; 13(12): 5347-61, 2014 Dec 05.
Artigo em Inglês | MEDLINE | ID: mdl-25325904

RESUMO

Disentanglement of functional complexity associated with plant mitogen-activated protein kinase (MAPK) signaling has benefited from transcriptomic, proteomic, phosphoproteomic, and genetic studies. Published transcriptomic analysis of a double homozygous recessive anp2anp3 mutant of two MAPK kinase kinase (MAPKKK) genes called Arabidopsis thaliana Homologues of Nucleus- and Phragmoplast-localized Kinase 2 (ANP2) and 3 (ANP3) showed the upregulation of stress-related genes. In this study, a comparative proteomic analysis of anp2anp3 mutant against its respective Wassilevskaja ecotype (Ws) wild type background is provided. Such differential proteomic analysis revealed overabundance of core enzymes such as FeSOD1, MnSOD, DHAR1, and FeSOD1-associated regulatory protein CPN20, which are involved in the detoxification of reactive oxygen species in the anp2anp3 mutant. The proteomic results were validated at the level of single protein abundance by Western blot analyses and by quantitative biochemical determination of antioxidant enzymatic activities. Finally, the functional network of proteins involved in antioxidant defense in the anp2anp3 mutant was physiologically linked with the increased resistance of mutant seedlings against paraquat treatment.


Assuntos
Antioxidantes/metabolismo , Proteínas de Arabidopsis/metabolismo , Arabidopsis/metabolismo , MAP Quinase Quinase Quinases/metabolismo , Proteoma/metabolismo , Proteômica/métodos , Plântula/metabolismo , Arabidopsis/efeitos dos fármacos , Arabidopsis/genética , Proteínas de Arabidopsis/genética , Cromatografia Líquida , Herbicidas/farmacologia , Immunoblotting , MAP Quinase Quinase Quinases/genética , Modelos Biológicos , Mutação , Paraquat/farmacologia , Proteoma/genética , Espécies Reativas de Oxigênio/metabolismo , Plântula/efeitos dos fármacos , Plântula/genética , Transdução de Sinais/efeitos dos fármacos , Superóxido Dismutase/metabolismo , Espectrometria de Massas em Tandem
10.
New Phytol ; 203(4): 1175-1193, 2014 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-24923680

RESUMO

The role of YODA MITOGEN ACTIVATED PROTEIN KINASE KINASE KINASE 4 (MAPKKK4) upstream of MITOGEN ACTIVATED PROTEIN KINASE 6 (MPK6) was studied during post-embryonic root development of Arabidopsis thaliana. Loss- and gain-of-function mutants of YODA (yda1 and ΔNyda1) were characterized in terms of root patterning, endogenous auxin content and global proteomes. We surveyed morphological and cellular phenotypes of yda1 and ΔNyda1 mutants suggesting possible involvement of auxin. Endogenous indole-3-acetic acid (IAA) levels were up-regulated in both mutants. Proteomic analysis revealed up-regulation of auxin biosynthetic enzymes tryptophan synthase and nitrilases in these mutants. The expression, abundance and phosphorylation of MPK3, MPK6 and MICROTUBULE ASSOCIATED PROTEIN 65-1 (MAP65-1) were characterized by quantitative polymerase chain reaction (PCR) and western blot analyses and interactions between MAP65-1, microtubules and MPK6 were resolved by quantitative co-localization studies and co-immunoprecipitations. yda1 and ΔNyda1 mutants showed disoriented cell divisions in primary and lateral roots, abortive cytokinesis, and differential subcellular localization of MPK6 and MAP65-1. They also showed deregulated expression of TANGLED1 (TAN1), PHRAGMOPLAST ORIENTING KINESIN 1 (POK1), and GAMMA TUBULIN COMPLEX PROTEIN 4 (GCP4). The findings that MPK6 localized to preprophase bands (PPBs) and phragmoplasts while the mpk6-4 mutant transformed with MPK6AEF (alanine (A)-glutamic acid (E)-phenylanine (F)) showed a root phenotype similar to that of yda1 demonstrated that MPK6 is an important player downstream of YODA. These data indicate that YODA and MPK6 are involved in post-embryonic root development through an auxin-dependent mechanism regulating cell division and mitotic microtubule (PPB and phragmoplast) organization.


Assuntos
Proteínas de Arabidopsis/metabolismo , Arabidopsis/citologia , Arabidopsis/enzimologia , Divisão Celular , Ácidos Indolacéticos/metabolismo , MAP Quinase Quinase Quinases/metabolismo , Proteínas Quinases Ativadas por Mitógeno/metabolismo , Raízes de Plantas/embriologia , Regulação para Cima , Arabidopsis/efeitos dos fármacos , Arabidopsis/embriologia , Divisão Celular/efeitos dos fármacos , Citocinese/efeitos dos fármacos , Imunofluorescência , Ácidos Indolacéticos/farmacologia , Interfase , Meristema/citologia , Meristema/efeitos dos fármacos , Microtúbulos/efeitos dos fármacos , Microtúbulos/metabolismo , Mitose/efeitos dos fármacos , Mutação/genética , Fenótipo , Fosforilação/efeitos dos fármacos , Epiderme Vegetal/citologia , Raízes de Plantas/anatomia & histologia , Raízes de Plantas/citologia , Ligação Proteica/efeitos dos fármacos , Transporte Proteico/efeitos dos fármacos , Proteômica , Regulação para Cima/efeitos dos fármacos
11.
Foods ; 13(9)2024 Apr 24.
Artigo em Inglês | MEDLINE | ID: mdl-38731673

RESUMO

Listeria monocytogenes is the causative agent of listeriosis, a severe foodborne illness characterized by septicemia, meningitis, encephalitis, abortions, and occasional death in infants and immunocompromised individuals. L. monocytogenes is composed of four genetic lineages (I, II, III, and IV) and fourteen serotypes. The aim of the current study was to identify proteins that can serve as biomarkers for detection of genetic lineage III strains based on simple antibody-based methods. Liquid chromatography (LC) with electrospray ionization tandem mass spectrometry (ESI MS/MS) followed by bioinformatics and computational analysis were performed on three L. monocytogenes strains (NRRL B-33007, NRRL B-33014, and NRRL B-33077), which were used as reference strains for lineages I, II, and III, respectively. Results from ESI MS/MS revealed 42 unique proteins present in NRRL B-33077 and absent in NRRL B-33007 and NRRL B-33014 strains. BLAST analysis of the 42 proteins against a broader panel of >80 sequenced strains from lineages I and II revealed four proteins [TM2 domain-containing protein (NRRL B-33077_2770), DUF3916 domain-containing protein (NRRL B-33077_1897), DNA adenine methylase (NRRL B-33077_1926), and protein RhsA (NRRL B-33077_1129)] that have no homology with any sequenced strains in lineages I and II. The four genes that encode these proteins were expressed in Escherichia coli strain DE3 and purified. Polyclonal antibodies were prepared against purified recombinant proteins. ELISA using the polyclonal antibodies against 12 L. monocytogenes lineage I, II, and III isolates indicated that TM2 protein and DNA adenine methylase (Dam) detected all lineage III strains with no reaction to lineage I and II strains. In conclusion, two proteins including TM2 protein and Dam are potentially useful biomarkers for detection and differentiation of L. monocytogenes lineage III strains in clinical, environmental, and food processing facilities. Furthermore, these results validate the approach of using a combination of proteomics and bioinformatics to identify useful protein biomarkers.

12.
Proteomics ; 13(3-4): 637-62, 2013 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-23197376

RESUMO

Maize (Zea mays L.) is the most grown cereal crop in the world (839 million tons in 2012). According to its agro-economical importance, maize has received tremendous attention from research communities of academic, state, and industry origin. In this manuscript, we aspire to provide readers with the first comprehensive review of proteomics studies performed on maize within a 1987-2012 time period. The following topics are presented here: maize proteome profiling, developmental proteomics, response to abiotic and biotic stress, maize phosphoproteomics, tissue-specific wild-type versus mutant analyses, heterosis, seed viability, maize allergens, and safety assessment of genetically modified maize. Tissues, organelles, subcellular compartments, secretomes, methods, phenomena, and pertinent proteins were summarized and referenced in tables and figures to provide readers with expediently accessible information in the context of up-to-date achievements. This review illustrates maize proteomics as a firmly established research area with laboratories around the world diligently advancing our knowledge of diverse aspects of maize biology.


Assuntos
Proteínas de Plantas/metabolismo , Proteoma/metabolismo , Sementes/metabolismo , Zea mays/metabolismo , Animais , Humanos , Especificidade de Órgãos , Fosfoproteínas/metabolismo , Fosforilação , Doenças das Plantas/microbiologia , Processamento de Proteína Pós-Traducional , Proteômica , Sementes/crescimento & desenvolvimento , Estresse Fisiológico , Zea mays/crescimento & desenvolvimento , Zea mays/microbiologia
13.
Proteomics ; 13(9): 1513-8, 2013 May.
Artigo em Inglês | MEDLINE | ID: mdl-23457007

RESUMO

The filamentous fungus Aspergillus flavus is an opportunistic soil-borne pathogen that produces aflatoxins, the most potent naturally occurring carcinogenic compounds known. This work represents the first gel-based profiling analysis of A. flavus proteome and establishes a 2D proteome map. Using 2DE and MALDI-TOF-MS/MS, we identified 538 mycelial proteins of the aflatoxigenic strain NRRL 3357, the majority of which were functionally annotated as related to various cellular metabolic and biosynthetic processes. Additionally, a few enzymes from the aflatoxin synthesis pathway were also identified.


Assuntos
Aspergillus flavus/metabolismo , Proteínas Fúngicas/análise , Proteoma/análise , Aflatoxinas/metabolismo , Eletroforese em Gel Bidimensional/métodos , Proteoma/metabolismo , Espectrometria de Massas por Ionização e Dessorção a Laser Assistida por Matriz , Espectrometria de Massas em Tandem
14.
J Proteome Res ; 12(10): 4435-48, 2013 Oct 04.
Artigo em Inglês | MEDLINE | ID: mdl-23931732

RESUMO

LY294002 is a synthetic quercetin-like compound, which, unlike wortmannin, is more specific inhibitor of phosphatidylinositol 3-kinase (PI3K). It inhibits endocytosis and vacuolar transport. We report here on the proteome-wide effects of LY294002 on Arabidopsis roots focusing on proteins involved in vesicular trafficking and stress response. At the subcellular level, LY294002 caused swelling and clustering of late endosomes leading to inhibition of vacuolar transport. At the proteome level, this compound caused changes in abundances of proteins categorized to 10 functional classes. Among proteins involved in vesicular trafficking, a small GTPase ARFA1f was more abundant, indicating its possible contribution to the aggregation and fusion of late endosomes triggered by LY294002. Our study provides new information on storage proteins and vacuolar hydrolases in vegetative tissues treated by LY294002. Vacuolar hydrolases were downregulated, while storage proteins were more abundant, suggesting that storage proteins were protected from degradation in swollen multivesicular bodies upon LY294002 treatment. Upregulation of 2S albumin was validated by immunoblotting and immunolabeling analyses. Our study also pointed to the control of antioxidant enzyme machinery by PI3K because LY294002 downregulated two isozymes of superoxide dismutase. This most likely occurred via PI3K-mediated downregulation of protein AtDJ1A. Finally, we discuss specificity differences of LY294002 and wortmannin against PI3K, which are reflected at the proteome level. Compared with wortmannin, LY294002 showed more narrow and perhaps also more specific effects on proteins, as suggested by gene ontology functional annotation.


Assuntos
Proteínas de Arabidopsis/antagonistas & inibidores , Arabidopsis/metabolismo , Cromonas/farmacologia , Morfolinas/farmacologia , Inibidores de Fosfoinositídeo-3 Quinase , Proteoma/metabolismo , Vesículas Transportadoras/metabolismo , Arabidopsis/citologia , Arabidopsis/efeitos dos fármacos , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Transporte Biológico , Regulação da Expressão Gênica de Plantas/efeitos dos fármacos , Anotação de Sequência Molecular , Fosfatidilinositol 3-Quinases/metabolismo , Raízes de Plantas/citologia , Raízes de Plantas/efeitos dos fármacos , Raízes de Plantas/metabolismo , Proteoma/genética , Estresse Fisiológico , Rede trans-Golgi/metabolismo
15.
BMC Bioinformatics ; 13 Suppl 15: S13, 2012.
Artigo em Inglês | MEDLINE | ID: mdl-23046347

RESUMO

BACKGROUND: Currently, the tandem mass spectrometry (MSMS) of peptides is a dominant technique used to identify peptides and consequently proteins. The peptide fragmentation inside the mass analyzer typically offers a spectrum containing several different groups of ions. The mass to charge (m/z) values of these ions can be exactly calculated following simple rules based on the possible peptide fragmentation reactions. But the (relative) intensities of the particular ions cannot be simply predicted from the amino-acid sequence of the peptide. This study presents initial work towards developing a theoretical fundamental approach to ion intensity elucidation by utilizing quantum mechanical computations. METHODS: MSMS spectra of the doubly charged GAVLK peptide were collected on electrospray ion trap mass spectrometers using low energy modes of fragmentation. Density functional theory (DFT) calculations were performed on the population of ion precursors to determine the fragment ion intensities corresponding to a Boltzmann distribution of the protonation of nitrogens in the peptide backbone amide bonds. RESULTS: We were able to a) predict the y and b ions intensities order in concert with the experimental observation; b) predict relative intensities of y ions with errors not exceeding the experimental variation. CONCLUSIONS: These results suggest that the GAVLK peptide fragmentation process in the ion trap mass spectrometer is predominantly driven by the thermodynamic stability of the precursor ions formed upon ionization of the sample. The computational approach presented in this manuscript successfully calculated ion intensities in the mass spectra of this doubly charged tryptic peptide, based solely on its amino acid sequence. As such, this work indicates a potential of incorporating quantum mechanical calculations into mass spectrometry based algorithms for molecular identification.


Assuntos
Biologia Computacional/métodos , Íons/química , Peptídeos/química , Espectrometria de Massas em Tandem/métodos , Algoritmos , Sequência de Aminoácidos , Termodinâmica
16.
J Proteome Res ; 11(6): 3127-42, 2012 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-22524784

RESUMO

Wortmannin is a widely used pharmaceutical compound which is employed to define vesicular trafficking routes of particular proteins or cellular compounds. It targets phosphatidylinositol 3-kinase and phosphatidylinositol 4-kinases in a dose-dependent manner leading to the inhibition of protein vacuolar sorting and endocytosis. Combined proteomics and cell biological approaches have been used in this study to explore the effects of wortmannin on Arabidopsis root cells, especially on proteome and endomembrane trafficking. On the subcellular level, wortmannin caused clustering, fusion, and swelling of trans-Golgi network (TGN) vesicles and multivesicular bodies (MVBs) leading to the formation of wortmannin-induced multivesicular compartments. Appearance of wortmannin-induced compartments was associated with depletion of TGN as revealed by electron microscopy. On the proteome level, wortmannin induced massive changes in protein abundance profiles. Wortmannin-sensitive proteins belonged to various functional classes. An inhibition of vacuolar trafficking by wortmannin was related to the downregulation of proteins targeted to the vacuole, as showed for vacuolar proteases. A small GTPase, RabA1d, which regulates vesicular trafficking at TGN, was identified as a new protein negatively affected by wortmannin. In addition, Sec14 was upregulated and PLD1 alpha was downregulated by wortmannin.


Assuntos
Androstadienos/farmacologia , Proteínas de Arabidopsis/metabolismo , Arabidopsis/metabolismo , Raízes de Plantas/metabolismo , Proteoma/metabolismo , Rede trans-Golgi/metabolismo , Arabidopsis/citologia , Arabidopsis/efeitos dos fármacos , Corpos Multivesiculares/efeitos dos fármacos , Corpos Multivesiculares/metabolismo , Fosfolipase D/metabolismo , Proteínas de Transferência de Fosfolipídeos/metabolismo , Raízes de Plantas/citologia , Raízes de Plantas/efeitos dos fármacos , Transporte Proteico/efeitos dos fármacos , Wortmanina , Proteínas rab de Ligação ao GTP/metabolismo , Rede trans-Golgi/efeitos dos fármacos , Rede trans-Golgi/ultraestrutura
17.
Proteomics ; 11(1): 114-27, 2011 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-21182199

RESUMO

Infection of the maize (Zea mays L.) with aflatoxigenic fungus Aspergillus flavus and consequent contamination with carcinogenic aflatoxin is a persistent and serious agricultural problem causing disease and significant crop losses worldwide. The rachis (cob) is an important structure of maize ear that delivers essential nutrients to the developing kernels and A. flavus spreads through the rachis to infect kernels within the ear. Therefore, rachis plays an important role in fungal proliferation and subsequent kernel contamination. We used proteomic approaches and investigated the rachis tissue from aflatoxin accumulation resistant (Mp313E and Mp420) and susceptible (B73 and SC212m) maize inbred lines. First, we compared rachis proteins from resistant and susceptible inbred lines, which revealed that the young resistant rachis contains higher levels of abiotic stress-related proteins and proteins from phenylpropanoid metabolism, whereas susceptible young rachis contains pathogenesis-related proteins, which are generally inducible upon biotic stress. Second, we identified A. flavus-responsive proteins in rachis of both resistant and susceptible genotypes after 10- and 35-day infection. Differential expression of many stress/defense proteins during rachis juvenility, maturation and after A. flavus challenge demonstrates that resistant rachis relies on constitutive defenses, while susceptible rachis is more dependent on inducible defenses.


Assuntos
Aflatoxinas/metabolismo , Aspergillus flavus/patogenicidade , Estruturas Vegetais/metabolismo , Estruturas Vegetais/microbiologia , Proteômica/métodos , Zea mays/metabolismo , Zea mays/microbiologia , Eletroforese em Gel Bidimensional , Imunidade Inata/fisiologia
18.
Proteomics ; 11(21): 4262-5, 2011 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-21834139

RESUMO

This study is the first proteomics analysis of the muscularis complexus (pipping muscle) in chicken (Gallus gallus) broiler embryos. We used differential detergent fractionation and nano-HPLC-MS/MS analysis to identify 676 proteins from all cellular components. The identified proteins were functionally classified in accordance with their involvement in various cellular activities.


Assuntos
Embrião de Galinha/química , Proteínas Musculares/análise , Músculos/química , Proteoma/análise , Animais , Embrião de Galinha/citologia , Galinhas/metabolismo , Cromatografia Líquida de Alta Pressão , Proteômica , Espectrometria de Massas em Tandem
19.
J Proteome Res ; 10(2): 488-501, 2011 Feb 04.
Artigo em Inglês | MEDLINE | ID: mdl-21090759

RESUMO

The growing importance of vesicular trafficking and cytoskeleton dynamic reorganization during plant development requires the exploitation of novel experimental approaches. Several genetic and cell biological studies have used diverse pharmaceutical drugs that inhibit vesicular trafficking and secretion to study these phenomena. Here, proteomic and cell biology approaches were applied to study effects of brefeldin A (BFA), an inhibitor of vesicle recycling and secretion, in Arabidopsis roots. The main aim of this study was to obtain an overview of proteins affected by BFA, but especially to identify new proteins involved in the vesicular trafficking and its cross-talk to the actin cytoskeleton. The results showed that BFA altered vesicular trafficking and caused the formation of BFA-compartments which was accompanied by differential expression of several proteins in root cells. Some of the BFA-up-regulated proteins belong to the class of the vesicular trafficking proteins, such as V-ATPase and reversibly glycosylated polypeptide, while others, such as profilin 2 and elongation factor 1 alpha, are rather involved in the remodeling of the actin cytoskeleton. Upregulation of profilin 2 by BFA was verified by immunoblot and live imaging at subcellular level. The latter approach also revealed that profilin 2 accumulated in BFA-compartments which was accompanied by remodeling of the actin cytoskeleton in BFA-treated root cells. Thus, profilin 2 seems to be involved in the cross-talk between vesicular trafficking and the actin cytoskeleton, in a BFA-dependent manner.


Assuntos
Proteínas de Arabidopsis/metabolismo , Arabidopsis/efeitos dos fármacos , Arabidopsis/metabolismo , Brefeldina A/farmacologia , Profilinas/metabolismo , Proteoma/metabolismo , Actinas/metabolismo , Citoesqueleto/efeitos dos fármacos , Eletroforese em Gel Bidimensional , Proteínas de Plantas/análise , Proteínas de Plantas/metabolismo , Raízes de Plantas/citologia , Raízes de Plantas/metabolismo , Transporte Proteico/efeitos dos fármacos , Proteoma/análise , Proteômica , Transdução de Sinais/efeitos dos fármacos , Frações Subcelulares/metabolismo
20.
Sci Rep ; 11(1): 15915, 2021 08 05.
Artigo em Inglês | MEDLINE | ID: mdl-34354130

RESUMO

Apocrine secretion is a recently discovered widespread non-canonical and non-vesicular secretory mechanism whose regulation and purpose is only partly defined. Here, we demonstrate that apocrine secretion in the prepupal salivary glands (SGs) of Drosophila provides the sole source of immune-competent and defense-response proteins to the exuvial fluid that lies between the metamorphosing pupae and its pupal case. Genetic ablation of its delivery from the prepupal SGs to the exuvial fluid decreases the survival of pupae to microbial challenges, and the isolated apocrine secretion has strong antimicrobial effects in "agar-plate" tests. Thus, apocrine secretion provides an essential first line of defense against exogenously born infection and represents a highly specialized cellular mechanism for delivering components of innate immunity at the interface between an organism and its external environment.


Assuntos
Glândulas Apócrinas/metabolismo , Pupa/imunologia , Glândulas Salivares/metabolismo , Animais , Glândulas Apócrinas/imunologia , Glândulas Apócrinas/fisiologia , Transporte Biológico , Proteínas de Drosophila/metabolismo , Drosophila melanogaster/metabolismo , Células Epiteliais , Glândulas Exócrinas/metabolismo , Imunidade Inata/imunologia , Glândulas Salivares/imunologia , Glândulas Salivares/fisiologia
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa