Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
Phys Rev Lett ; 115(24): 241302, 2015 Dec 11.
Artigo em Inglês | MEDLINE | ID: mdl-26705622

RESUMO

Using high-resolution data from the Galactic Arecibo L-Band Feed Array HI (GALFA-Hi) survey, we show that linear structure in Galactic neutral hydrogen (Hi) correlates with the magnetic field orientation implied by Planck 353 GHz polarized dust emission. The structure of the neutral interstellar medium is more tightly coupled to the magnetic field than previously known. At high Galactic latitudes, where the Planck data are noise dominated, the Hi data provide an independent constraint on the Galactic magnetic field orientation, and hence the local dust polarization angle. We detect strong cross-correlations between template maps constructed from estimates of dust intensity combined with either Hi-derived angles, starlight polarization angles, or Planck 353 GHz angles. The Hi data thus provide a new tool in the search for inflationary gravitational wave B-mode polarization in the cosmic microwave background, which is currently limited by dust foreground contamination.

2.
Nat Astron ; 8(8): 983-990, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-39175532

RESUMO

Cold, dense clouds in the interstellar medium of our Galaxy are 4-5 orders of magnitude denser than their diffuse counterparts. Our Solar System has most likely encountered at least one of these dense clouds during its lifetime. However, evidence for such an encounter has not been studied in detail yet. Here we derive the velocity field of the Local Ribbon of Cold Clouds (LRCC) by modelling the 21 cm data from the HI4PI survey, finding that the Solar System may have passed through the LRCC in the constellation Lynx 2-3 million years ago. Using a state-of-the-art simulation of the heliosphere, we show that during the passage, the heliosphere shrinks to a scale of 0.22 au, smaller than the Earth's orbit around the Sun. This would have put the Earth in direct contact with the dense interstellar medium for a period of time and exposed it to a neutral hydrogen density above 3,000 cm-3. Such a scenario agrees with geological evidence from 60Fe and 244Pu isotopes. The encounter and related increased radiation from Galactic cosmic rays might have had a substantial impact on the Earth's system and climate.

SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa