Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Proc Biol Sci ; 281(1793)2014 Oct 22.
Artigo em Inglês | MEDLINE | ID: mdl-25209942

RESUMO

Sharks are one of the most threatened groups of marine animals worldwide, mostly owing to overfishing and habitat degradation/loss. Although these cartilaginous fish have evolved to fill many ecological niches across a wide range of habitats, they have limited capability to rapidly adapt to human-induced changes in their environments. Contrary to global warming, ocean acidification was not considered as a direct climate-related threat to sharks. Here we show, for the first time, that an early ontogenetic acclimation process of a tropical shark (Chiloscyllium punctatum) to the projected scenarios of ocean acidification (ΔpH = 0.5) and warming (+4°C; 30°C) for 2100 elicited significant impairments on juvenile shark condition and survival. The mortality of shark embryos at the present-day thermal scenarios was 0% both at normocapnic and hypercapnic conditions. Yet routine metabolic rates (RMRs) were significantly affected by temperature, pH and embryonic stage. Immediately after hatching, the Fulton condition of juvenile bamboo sharks was significantly different in individuals that experienced future warming and hypercapnia; 30 days after hatching, survival rapidly declined in individuals experiencing both ocean warming and acidification (up to 44%). The RMR of juvenile sharks was also significantly affected by temperature and pH. The impact of low pH on ventilation rates was significant only under the higher thermal scenario. This study highlights the need of experimental-based risk assessments of sharks to climate change. In other words, it is critical to directly assess risk and vulnerability of sharks to ocean acidification and warming, and such effort can ultimately help managers and policy-makers to take proactive measures targeting most endangered species.


Assuntos
Mudança Climática , Água do Mar/química , Tubarões/genética , Aclimatação , Animais , Aquecimento Global , Concentração de Íons de Hidrogênio , Oceanos e Mares , Tubarões/embriologia , Tubarões/fisiologia , Clima Tropical
2.
Glob Chang Biol ; 20(10): 3068-79, 2014 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-24771544

RESUMO

Cleaning symbioses play an important role in the health of certain coastal marine communities. These interspecific associations often occur at specific sites (cleaning stations) where a cleaner organism (commonly a fish or shrimp) removes ectoparasites/damaged tissue from a 'client' (a larger cooperating fish). At present, the potential impact of climate change on the fitness of cleaner organisms remains unknown. This study investigated the physiological and biochemical responses of tropical (Lysmata amboinensis) and temperate (L. seticaudata) cleaner shrimp to global warming. Specifically, thermal limits (CTMax), metabolic rates, thermal sensitivity, heat shock response (HSR), lipid peroxidation [malondialdehyde (MDA) concentration], lactate levels, antioxidant (GST, SOD and catalase) and digestive enzyme activities (trypsin and alkaline phosphatase) at current and warming (+3 °C) temperature conditions. In contrast to the temperate species, CTMax values decreased significantly from current (24-27 °C) to warming temperature conditions (30 °C) for the tropical shrimp, where metabolic thermal sensitivity was affected and the HSR was significantly reduced. MDA levels in tropical shrimp increased dramatically, indicating extreme cellular lipid peroxidation, which was not observed in the temperate shrimp. Lactate levels, GST and SOD activities were significantly enhanced within the muscle tissue of the tropical species. Digestive enzyme activities in the hepatopancreas of both species were significantly decreased by warmer temperatures. Our data suggest that the tropical cleaner shrimp will be more vulnerable to global warming than the temperate Lysmata seticaudata; the latter evolved in a relatively unstable environment with seasonal thermal variations that may have conferred greater adaptive plasticity. Thus, tropical cleaning symbioses may be challenged at a greater degree by warming-related anthropogenic forcing, with potential cascading effects on the health and structuring of tropical coastal communities (e.g. coral reefs).


Assuntos
Aclimatação/fisiologia , Antioxidantes/metabolismo , Mudança Climática , Crustáceos/fisiologia , Enzimas/metabolismo , Temperatura Alta , Estresse Fisiológico , Animais , Organismos Aquáticos , Crustáceos/metabolismo , Resposta ao Choque Térmico , Peroxidação de Lipídeos , Especificidade da Espécie , Simbiose
3.
J Exp Zool A Ecol Integr Physiol ; 333(2): 126-132, 2020 02.
Artigo em Inglês | MEDLINE | ID: mdl-31793756

RESUMO

Atmospheric CO2 levels have been rising due to an increase in anthropic activities and its implications over marine ecosystems are unprecedented. The present study focused on the effects of ocean acidification (OA) on key hematological parameters of the juvenile small-spotted catsharks (Scyliorhinus canicula). Eggs were reared throughout the entire embryogenesis (~4 months) plus 5 additional months, in two experimental treatments (control: pCO2 ~ 400 µatm; and high CO2 : pCO2 ~ 900 µatm, Δ -0.3 pH units). After blood collection, the following hematological parameters were evaluated: (a) normal blood cells count (erythrocytes, leukocytes, and thrombocytes), (b) presence of erythrocytes with nuclear abnormalities, and (c) erythrocyte nucleus to cytoplasmic ratio. Concomitantly, to determine the cardiac and hematopoietic conditions, the spleen and heart to body ratios were also assessed. The present findings indicate that the measured variables may not be affected by elevated pCO2 in this temperate species, as no significant differences were observed between treatments across all the endpoints tested. Nonetheless, it is worth mentioning a decreasing trend observed in a number of thrombocytes associated with OA, which should foster further investigation, regarding other aspects of their coagulation response. Along with OA, other stressors are expected to impact marine life, such as warming and hypoxia. Thus, future research should aim to investigate the cumulative effect of these stressors on hematological parameters in sharks.


Assuntos
Dióxido de Carbono/efeitos adversos , Tubarões/sangue , Animais , Contagem de Células Sanguíneas , Plaquetas , Eritrócitos Anormais , Coração , Tamanho do Órgão , Água do Mar/química , Tubarões/embriologia , Baço
4.
Sci Rep ; 9(1): 12728, 2019 09 04.
Artigo em Inglês | MEDLINE | ID: mdl-31484945

RESUMO

Cleaning interactions are textbook examples of mutualisms. On coral reefs, most fishes engage in cooperative interactions with cleaners fishes, where they benefit from ectoparasite reduction and ultimately stress relief. Furthermore, such interactions elicit beneficial effects on clients' ecophysiology. However, the potential effects of future ocean warming (OW) and acidification (OA) on these charismatic associations are unknown. Here we show that a 45-day acclimation period to OW (+3 °C) and OA (980 µatm pCO2) decreased interactions between cleaner wrasses (Labroides dimidiatus) and clients (Naso elegans). Cleaners also invested more in the interactions by providing tactile stimulation under OA. Although this form of investment is typically used by cleaners to prolong interactions and reconcile after cheating, interaction time and client jolt rate (a correlate of dishonesty) were not affected by any stressor. In both partners, the dopaminergic (in all brain regions) and serotoninergic (forebrain) systems were significantly altered by these stressors. On the other hand, in cleaners, the interaction with warming ameliorated dopaminergic and serotonergic responses to OA. Dopamine and serotonin correlated positively with motivation to interact and cleaners interaction investment (tactile stimulation). We advocate that such neurobiological changes associated with cleaning behaviour may affect the maintenance of community structures on coral reefs.


Assuntos
Comportamento Animal , Peixes/fisiologia , Água do Mar/química , Animais , Comportamento Cooperativo , Recifes de Corais , Ecossistema , Concentração de Íons de Hidrogênio , Neurobiologia , Serotonina/metabolismo , Simbiose , Temperatura
5.
Front Physiol ; 10: 975, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31404314

RESUMO

The oceanic uptake of carbon dioxide (CO2) is increasing and changing the seawater chemistry, a phenomenon known as ocean acidification (OA). Besides the expected physiological impairments, there is an increasing evidence of detrimental OA effects on the behavioral ecology of certain marine taxa, including cephalopods. Within this context, the main goal of this study was to investigate, for the first time, the OA effects (∼1000 µatm; ΔpH = 0.4) in the development and behavioral ecology (namely shelter-seeking, hunting and response to a visual alarm cue) of the common cuttlefish (Sepia officinalis) early life stages, throughout the entire embryogenesis until 20 days after hatching. There was no evidence that OA conditions compromised the cuttlefish embryogenesis - namely development time, hatching success, survival rate and biometric data (length, weight and Fulton's condition index) of newly hatched cuttlefish were similar between the normocapnic and hypercapnic treatments. The present findings also suggest a certain behavioral resilience of the cuttlefish hatchlings toward near-future OA conditions. Shelter-seeking, hunting and response to a visual alarm cue did not show significant differences between treatments. Thus, we argue that cuttlefishes' nekton-benthic (and active) lifestyle, their adaptability to highly dynamic coastal and estuarine zones, and the already harsh conditions (hypoxia and hypercapnia) inside their eggs provide a degree of phenotypic plasticity that may favor the odds of the recruits in a future acidified ocean. Nonetheless, the interacting effects of multiple stressors should be further addressed, to accurately predict the resilience of this ecologically and economically important species in the oceans of tomorrow.

6.
Cell Stress Chaperones ; 23(5): 837-846, 2018 09.
Artigo em Inglês | MEDLINE | ID: mdl-29582345

RESUMO

Sharks have maintained a key role in marine food webs for 400 million years and across varying physicochemical contexts, suggesting plasticity to environmental change. In this study, we investigated the biochemical effects of ocean acidification (OA) levels predicted for 2100 (pCO2 ~ 900 µatm) on newly hatched tropical whitespotted bamboo sharks (Chiloscyllium plagiosum). Specifically, we measured lipid, protein, and DNA damage levels, as well as changes in the activity of antioxidant enzymes and non-enzymatic ROS scavengers in juvenile sharks exposed to elevated CO2 for 50 days following hatching. Moreover, we also assessed the secondary oxidative stress response, i.e., heat shock response and ubiquitin levels. Newly hatched sharks appear to cope with OA-related stress through a range of tissue-specific biochemical strategies, specifically through the action of antioxidant enzymatic compounds. Our findings suggest that ROS-scavenging molecules, rather than complex enzymatic proteins, provide an effective defense mechanism in dealing with OA-elicited ROS formation. We argue that sharks' ancient antioxidant system, strongly based on non-enzymatic antioxidants (e.g., urea), may provide them with resilience towards OA, potentially beyond the tolerance of more recently evolved species, i.e., teleosts. Nevertheless, previous research has provided evidence of detrimental effects of OA (interacting with other climate-related stressors) on some aspects of shark biology. Moreover, given that long-term acclimation and adaptive potential to rapid environmental changes are yet experimentally unaccounted for, future research is warranted to accurately predict shark physiological performance under future ocean conditions.


Assuntos
Estresse Oxidativo , Tubarões/metabolismo , Aclimatação , Animais , Antioxidantes/metabolismo , Dióxido de Carbono , Dano ao DNA , Resposta ao Choque Térmico , Concentração de Íons de Hidrogênio , Peroxidação de Lipídeos , Oceanos e Mares , Carbonilação Proteica , Clima Tropical , Ubiquitina/metabolismo
7.
Conserv Physiol ; 4(1): cow017, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-27293764

RESUMO

Small pelagic fishes are known to respond rapidly to changes in ocean climate. In this study, we evaluate the effects of future environmental warming (+2°C) during the early ontogeny of the European sardine, Sardina pilchardus. Warming reduced the survival of 30-day-old larvae by half. Length at hatching increased with temperature as expected, but no significant effect was observed on the length and growth at 30 days post-hatching. Warming did not significantly affect the thermal tolerance of sardine larvae, even though the mean lethal temperature increased by 1°C. In the warm conditions, sardine larvae showed signs of thermal stress, indicated by a pronounced increase in larval metabolism (Q 10 = 7.9) and a 45% increase in the heat shock response. Lipid peroxidation was not significantly affected by the higher temperature, even though the mean value doubled. Warming did not affect the time larvae spent swimming, but decreased by 36% the frequency of prey attacks. Given the key role of these small pelagics in the trophic dynamics off the Western Iberian upwelling ecosystem, the negative effects of warming on the early stages may have important implications for fish recruitment and ecosystem structure.

8.
Conserv Physiol ; 3(1): cov009, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-27293694

RESUMO

Seahorses are currently facing great challenges in the wild, including habitat degradation and overexploitation, and how they will endure additional stress from rapid climate change has yet to be determined. Unlike most fishes, the poor swimming skills of seahorses, along with the ecological and biological constraints of their unique lifestyle, place great weight on their physiological ability to cope with climate changes. In the present study, we evaluate the effects of ocean warming (+4°C) and acidification (ΔpH = -0.5 units) on the physiological and behavioural ecology of adult temperate seahorses, Hippocampus guttulatus. Adult seahorses were found to be relatively well prepared to face future changes in ocean temperature, but not the combined effect of warming and acidification. Seahorse metabolism increased normally with warming, and behavioural and feeding responses were not significantly affected. However, during hypercapnia the seahorses exhibited signs of lethargy (i.e. reduced activity levels) combined with a reduction of feeding and ventilation rates. Nonetheless, metabolic rates were not significantly affected. Future ocean changes, particularly ocean acidification, may further threaten seahorse conservation, turning these charismatic fishes into important flagship species for global climate change issues.

SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa