Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 1 de 1
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
Diabetologia ; 67(10): 2346-2366, 2024 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-39037604

RESUMO

AIMS/HYPOTHESIS: The relationship between metabolic dysfunction-associated steatotic liver disease (MASLD) and type 2 diabetes mellitus, insulin resistance and the metabolic syndrome is well established. While zinc finger BED-type containing 3 (ZBED3) has been linked to type 2 diabetes mellitus and the metabolic syndrome, its role in MASLD remains unclear. In this study, we aimed to investigate the function of ZBED3 in the context of MASLD. METHODS: Expression levels of ZBED3 were assessed in individuals with MASLD, as well as in cellular and animal models of MASLD. In vitro and in vivo analyses were conducted using a cellular model of MASLD induced by NEFA and an animal model of MASLD induced by a high-fat diet (HFD), respectively, to investigate the role of ZBED3 in MASLD. ZBED3 expression was increased by lentiviral infection or tail-vein injection of adeno-associated virus. RNA-seq and bioinformatics analysis were employed to examine the pathways through which ZBED3 modulates lipid accumulation. Findings from these next-generation transcriptome sequencing studies indicated that ZBED3 controls SREBP1c (also known as SREBF1; a gene involved in fatty acid de novo synthesis); thus, co-immunoprecipitation and LC-MS/MS were utilised to investigate the molecular mechanisms by which ZBED3 regulates the sterol regulatory element binding protein 1c (SREBP1c). RESULTS: In this study, we found that ZBED3 was significantly upregulated in the liver of individuals with MASLD and in MASLD animal models. ZBED3 overexpression promoted NEFA-induced triglyceride accumulation in hepatocytes in vitro. Furthermore, the hepatocyte-specific overexpression of Zbed3 promoted hepatic steatosis. Conversely, the hepatocyte-specific knockout of Zbed3 resulted in resistance of HFD-induced hepatic steatosis. Mechanistically, ZBED3 interacts directly with polypyrimidine tract-binding protein 1 (PTBP1) and affects its binding to the SREBP1c mRNA precursor to regulate SREBP1c mRNA stability and alternative splicing. CONCLUSIONS/INTERPRETATION: This study indicates that ZBED3 promotes hepatic steatosis and serves as a critical regulator of the progression of MASLD. DATA AVAILABILITY: RNA-seq data have been deposited in the NCBI Gene Expression Omnibus ( www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE231875 ). MS proteomics data have been deposited to the ProteomeXchange Consortium via the iProX partner repository ( https://proteomecentral.proteomexchange.org/cgi/GetDataset?ID=PXD041743 ).


Assuntos
Fígado Gorduroso , Proteína de Ligação a Regiões Ricas em Polipirimidinas , Animais , Humanos , Fígado Gorduroso/metabolismo , Masculino , Camundongos , Proteína de Ligação a Regiões Ricas em Polipirimidinas/metabolismo , Proteína de Ligação a Regiões Ricas em Polipirimidinas/genética , Proteína de Ligação a Elemento Regulador de Esterol 1/metabolismo , Proteína de Ligação a Elemento Regulador de Esterol 1/genética , Dieta Hiperlipídica , Fatores de Transcrição/metabolismo , Fatores de Transcrição/genética , Camundongos Endogâmicos C57BL , Resistência à Insulina/fisiologia , Diabetes Mellitus Tipo 2/metabolismo , Síndrome Metabólica/metabolismo , Fígado/metabolismo
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa